首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The availability of genetic maps and phenotypic data of segregating populations allows to localize and map agronomically important genes, and to identify closely associated molecular markers to be used in marker-assisted selection and positional cloning. The objective of the present work was to develop a durum wheat intervarietal genetic and physical map based on genomic microsatellite or genomic simple sequence repeats (gSSR) markers and expressed sequence tag (EST)-derived microsatellite (EST-SSR) markers. A set of 122 new EST-SSR loci amplified by 100 primer pairs was genetically mapped on the wheat A and B genome chromosomes. The whole map also comprises 149 gSSR markers amplified by 120 primer pairs used as anchor chromosome loci, two morphological markers (Black colour, Bla1, and spike glaucousness, Ws) and two seed storage protein loci (Gli-A2 and Gli-B2). The majority of SSR markers tested (182) was chromosome-specific. Out of 275 loci 241 loci assembled in 25 linkage groups assigned to the chromosomes of the A and B genome and 34 remained unlinked. A higher percentage of markers (54.4%), localized on the B genome chromosomes, in comparison to 45.6% distributed on the A genome. The whole map covered 1,605 cM. The B genome accounted for 852.2 cM of genetic distance; the A genome basic map spanned 753.1 cM with a minimum length of 46.6 cM for chromosome 5A and a maximum of 156.2 cM for chromosome 3A and an average value of 114.5 cM. The primer sets that amplified two or more loci mapped to homoeologous as well as to non-homoeologous sites. Out of 241 genetically mapped loci 213 (88.4%) were physically mapped by using the nulli-tetrasomic, ditelosomic and a stock of 58 deletion lines dividing the A and B genome chromosomes in 94 bins. No discrepancies concerning marker order were observed but the cytogenetic maps revealed in some cases small genetic distance covered large physical regions. Putative function for mapped SSRs were assigned by searching against GenBank nonredundant database using TBLASTX algorithms.  相似文献   

2.
 An intervarietal molecular marker map covering most of the nuclear genome was developed in Triticum aestivum. One hundred and six androgenetic-derived doubled haploid lines obtained from the F1 between monosomics of ‘Chinese Spring’ and ‘Courtot’ were analysed for genetic mapping. The map covered 18 of the 21 chromosomes with an identical distribution of markers in the A and B genome, and only small segments of the D genome. Distorted markers were mapped using Bailey’s 2-point method and revealed skewed regions on 1A, 1DS, 2A, 2B, 4AS and 6B. Comparison with a wide cross [‘Opata’×Synthetic hexaploid (T. tauschii/‘Altar 84’)] showed colinearity for markers on homologous chromosomes, but revealed a large proportion (25%) of markers mapped on non-homoeologous chromosomes, i. e. heterologous markers. The origin of the material and distortion segregation are discussed with particular emphasis on investigations of D-genome markers. Received: 2 May 1996 / Accepted: 2 August 1996  相似文献   

3.
4.
Short interspersed nuclear elements (SINEs) are highly abundant non‐autonomous retrotransposons that are widespread in plants. They are short in size, non‐coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem‐like duplications and transduction of adjacent sequence regions.  相似文献   

5.
Botrytis cinerea (teleomorph Botryotinia fuckeliana) is a necrotrophic plant pathogenic fungus that causes grey mould and enormous economic losses worldwide in different crops. Control of B. cinerea is difficult due to the appearance of fungicide‐resistant isolates, and the diversity in virulence due to genetic variability and, perhaps, the infection with mycoviruses or fungal viruses. The discovery of mycoviruses and their possible application as biocontrol agents, as well as their use as tools to study the plant–pathogen interaction, has encouraged their study in B. cinerea. Herein, we have analysed the occurrence of mycoviruses in Spanish B. cinerea isolates to approach a better understanding of the interactions among viruses, fungi and plants in this pathosystem. Fifty‐five percent of the B. cinerea isolates analysed contained double‐stranded RNA (dsRNA) elements, and the number of dsRNA elements, their relative concentration and size were variable among isolates. Some of these dsRNAs were related to the presence of virus like rod or isometric particles, and to cellular degeneration and malformed mitochondria. We have also demonstrated that a 3 kb dsRNA present in 55% of the isolates having dsRNA elements was a mycovirus genome. Partial sequence of that mycovirus presented high identity in nucleotide and amino acid sequence with Botrytis cinerea mitovirus 1 (BcMV1). Analysis of the genetic distance within Spanish BcMV1 sequences showed the existence of different isolates of this mitovirus inside the Spanish B. cinerea population analysed. This is the first report of the variability of dsRNA elements and the partial genome sequence of a mitovirus associated with Spanish B. cinerea isolates and the genetic diversity within Spanish isolates of BcMV1.  相似文献   

6.
Black poplar (Populus nigra L.) is a tree of ecological and economic interest. A better knowledge of P. nigra genome is needed for an effective protection and use of its genetic resources. The main objective of this study is the construction of a highly informative genetic map of P. nigra species including genes of adaptive and economic interest. Two genotypes originated from contrasted natural Italian populations were crossed to generate a F1 mapping pedigree of 165 individuals. Amplification fragment length polymorphism (AFLP), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) markers were used to genotype 92 F1 individuals, and the pseudo-test-cross strategy was applied for linkage analysis. The female parent map included 368 markers (274 AFLPs, 91 SSRs, and 3 SNPs) and spanned 2,104 cM with 20 linkage groups, and the male parent map, including 317 markers (205 AFLPs, 106 SSRs, 5 SNPs, and sex trait), spanned 2,453 cM with 23 main linkage groups. The sex, as morphological trait, was mapped on the linkage group XIX of the male parent map. The generated maps are among the most informative in SSRs when compared to the Populus maps published so far and allow a complete alignment with the 19 haploid chromosomes of Populus sequence genome. These genetic maps provide informative tools for a better understanding of P. nigra genome structure and genetic improvement of this ecologically and economically important European tree species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Genetic and physical maps are powerful tools to anchor fragmented draft genome assemblies generated from next‐generation sequencing. Currently, two draft assemblies of Nelumbo nucifera, the genomes of ‘China Antique’ and ‘Chinese Tai‐zi’, have been released. However, there is presently no information on how the sequences are assembled into chromosomes in N. nucifera. The lack of physical maps and inadequate resolution of available genetic maps hindered the assembly of N. nucifera chromosomes. Here, a linkage map of N. nucifera containing 2371 bin markers [217 577 single nucleotide polymorphisms (SNPs)] was constructed using restriction‐site associated DNA sequencing data of 181 F2 individuals and validated by adding 197 simple sequence repeat (SSR) markers. Additionally, a BioNano optical map covering 86.20% of the ‘Chinese Tai‐zi’ genome was constructed. The draft assembly of ‘Chinese Tai‐zi’ was improved based on the BioNano optical map, showing an increase of the scaffold N50 from 0.989 to 1.48 Mb. Using a combination of multiple maps, 97.9% of the scaffolds in the ‘Chinese Tai‐zi’ draft assembly and 97.6% of the scaffolds in the ‘China Antique’ draft assembly were anchored into pseudo‐chromosomes, and the centromere regions along the pseudo‐chromosomes were identified. An evolutionary scenario was proposed to reach the modern N. nucifera karyotype from the seven ancestral eudicot chromosomes. The present study provides the highest‐resolution linkage map, the optical map and chromosome level genome assemblies for N. nucifera, which are valuable for the breeding and cultivation of N. nucifera and future studies of comparative and evolutionary genomics in angiosperms.  相似文献   

8.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

9.
The genome sequences of unicellular holozoans, the closest relatives to animals, are shedding light on the evolution of animal multicellularity, shaping the genetic contents of the putative premetazoans. However, the assembly quality of the genomes remains poor compared to the major model organisms such as human and fly. Improving the assembly is critical for precise comparative genomics studies and further molecular biological studies requiring accurate sequence information such as enhancer analysis and genome editing. In this report, we present a new strategy to improve the assembly by fully exploiting the information of Illumina mate-pair reads. By visualizing the distance and orientation of the mapped read pairs, we could highlight the regions where possible assembly errors exist in the genome sequence of Capsaspora, a lineage of unicellular holozoans. Manual modification of these errors repaired 590 assembly problems in total and reassembled 84 supercontigs into 55. Our telomere prediction analysis using the read pairs containing the pan-eukaryotic telomere-like sequence identified at least 13 chromosomes. The resulting new assembly posed us a re-annotation of 112 genes, including 15 putative receptor protein tyrosine kinases. Our strategy thus provides a useful approach for improving assemblies of draft genomes, and the new Capsaspora genome offers us an opportunity to adjust the view on the genome of the unicellular animal ancestor.  相似文献   

10.
11.
Anopheles atroparvus (Diptera: Culicidae) is one of the main malaria vectors of the Maculipennis group in Europe. Cytogenetic analysis based on salivary gland chromosomes has been used in taxonomic and population genetic studies of mosquitoes from this group. However, a high‐resolution cytogenetic map that could be used in physical genome mapping in An. atroparvus is still lacking. In the present study, a high‐quality photomap of the polytene chromosomes from ovarian nurse cells of An. atroparvus was developed. Using fluorescent in situ hybridization, 10 genes from the five largest genomic supercontigs on the polytene chromosome were localized and 28% of the genome was anchored to the cytogenetic map. The study established chromosome arm homology between An. atroparvus and the major African malaria vector Anopheles gambiae, suggesting a whole‐arm translocation between autosomes of these two species. The standard photomap constructed for ovarian nurse cell chromosomes of An. atroparvus will be useful for routine physical mapping. This map will assist in the development of a fine‐scale chromosome‐based genome assembly for this species and will also facilitate comparative and evolutionary genomics studies in the genus Anopheles.  相似文献   

12.
The heterochromatin of chromosomes 2 and 3 of Drosophila melanogaster contains about 30 essential genes defined by genetic analysis. In the last decade only a few of these genes have been molecularly characterized and found to correspond to protein-coding genes involved in important cellular functions. Moreover, several predicted genes have been identified by annotation of genomic sequence that are associated with polytene chromosome divisions 40, 41 and 80 but their locations on the cytogenetic map of the heterochromatin are still uncertain. To expand our current knowledge of the genetic functions located in heterochromatin, we have performed fluorescence in situ hybridization (FISH) mapping to mitotic chromosomes of nine bacterial artificial chromosomes (BACs) carrying several predicted genes and of 13 P element insertions assigned to the proximal regions of 2R and 3L. We found that 22 predicted genes map to the h46 region of 2R and eight map to the h47 regions of 3L. This amounts to at least 30 predicted genes located in these heterochromatic regions, whereas previous studies detected only seven vital genes. Finally, another 58 genes localize either in the euchromatin-heterochromatin transition regions or in the proximal euchromatin of 2R and 3L. Edited by: B. McKeeN. Corradini and F. Rossi contributed equally to this work  相似文献   

13.
14.
Presence of genes in gene-rich regions on wheat chromosomes has been widely reported. However, there is a lack of information on the precise characterization of these regions with respect to the distribution of genes and recombination. We attempted to critically analyze the available data to characterize gene-rich regions and to study the distribution of genes and recombination on wheat homoeologous group 6 chromosomes which are a reservoir of several useful genes controlling traits of economic importance. Consensus physical and genetic linkage maps were constructed for homoeologous group 6 using physical and genetic mapping data. Five major gene-rich regions were identified on homoeologous group 6 chromosomes, with two on the short and three on long arm. More than 90% of marker or gene loci were present in these five gene-rich regions, which comprise about 30% of the total physical chromosomal length. The gene-rich regions were mainly present in the distal 60% regions of the chromosomes. About 61% of the total loci map in the most distal regions which span only about 4% of the physical length of the chromosome. A range of sub-microscopic regions within each gene-rich region were also identified. Comparisons of the consensus physical and genetic linkage maps revealed that recombination occurred mainly in the gene-rich regions. Seventy percent of the total recombination occurred in the two most distally located regions that span only 4% of the physical length of the chromosomes. The relationship of recombination to the gene-rich region is not linear with distance from the centromere, especially on the long arm. The kb/cM estimates for group 6 chromosomes ranged from 146 kb in the gene-rich to about 10 Mb in the gene-poor region. The information obtained here is vital in understanding wheat genome structure and organization, which may lead in developing better strategies for positional cloning in wheat and related cereals.This revised version was pubished online in April 2005 with corrections to the page numbering.  相似文献   

15.

Background

Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions.

Methodology/Principal Findings

We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes).

Conclusions

The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation.  相似文献   

16.
Second‐generation, sex‐specific genetic linkage maps were generated for the economically important estuarine‐dependent marine fish Sciaenops ocellatus (red drum). The maps were based on F1 progeny from each of two single‐pair mating families. A total of 237 nuclear‐encoded microsatellite markers were mapped to 25 linkage groups. The female map contained 226 markers, with a total length of 1270.9 centiMorgans (cM) and an average inter‐marker interval of 6.53 cM; the male map contained 201 markers, with a total length of 1122.9 cM and an average inter‐marker interval of 6.03 cM. The overall recombination rate was approximately equal in the two sexes (♀:♂ = 1.03:1). Recombination rates in a number of linkage intervals, however, differed significantly between the same sex in both families and between sexes within families. The former occurred in 2.4% of mapped intervals, while the latter occurred in 51.2% of mapped intervals. Sex‐specific recombination rates varied within chromosomes, with regions of both female‐biased and male‐biased recombination. Original clones from which the microsatellite markers were generated were compared with genome sequence data for the spotted green puffer, Tetraodon nigroviridis; a total of 43 matches were located in 17 of 21 chromosomes of T. nigroviridis, while seven matches were in unknown portions of the T. nigroviridis genome. The map for red drum provides a new, useful tool for aquaculture, population genetics, and comparative genomics of this economically important marine species.  相似文献   

17.
We constructed a Brassica napus genetic map with 240 simple sequence repeats (SSR) primer pairs from private and public origins. SSR, or microsatellites, are highly polymorphic and efficient markers for the analysis of plant genomes. Our selection of primer pairs corresponded to 305 genetic loci that we were able to map. In addition, we also used 52 sequence-characterized amplified region primer pairs corresponding to 58 loci that were developed in our lab. Genotyping was performed on six F2 populations, corresponding to a total of 574 F2 individual plants, obtained according to an unbalanced diallel cross design involving six parental lines. The resulting consensus map presented 19 linkage groups ranging from 46.2 to 276.5 cM, which we were able to name after the B. napus map available at , thus enabling the identification of the A genome linkage groups originating from the B. rapa ancestor and the C genome linkage groups originating from the B. oleracea ancestor in the amphidiploid genome of B. napus. Some homoeologous regions were identified between the A and the C genomes. This map could be used to identify more markers, which would eventually be linked to genes controlling important agronomic characters in rapeseed. Furthermore, considering the good genome coverage we obtained, together with an observed homogenous distribution of the loci across the genome, this map is a powerful tool to be used in marker-assisted breeding. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
The conservation of the linear order (colinearity) of genetic markers along large chromosome segments in wheat and rice is well established, but less is known about the microcolinearity between both genomes at subcentimorgan distances. In this study we focused on the microcolinearity between a 2.6-cM interval flanked by markers Xcdo365 and Xucw65 on wheat chromosome 6B and rice chromosome 2. A previous study has shown that this wheat segment includes the Gpc-6B1 locus, which is responsible for large differences in grain protein content (GPC) and is the target of a positional cloning effort in our laboratories. Twenty-one recombination events between Xcdo365 and Xucw65 were found in a large segregating population (935 gametes) and used to map 17 genes selected from rice chromosome 2 in the wheat genetic map. We found a high level of colinearity between a 2.1-cM region flanked by loci Xucw75 and Xucw67 on wheat chromosome 6B and a 350-kb uninterrupted sequenced region in rice chromosome arm 2S. Colinearity between these two genomes was extended to the region proximal to Xucw67 (eight colinear RFLP markers), but was interrupted distal to Xucw75 (six non-colinear RFLP markers). Analysis of different comparative studies between rice and wheat suggests that microcolinearity is more frequently disrupted in the distal region of the wheat chromosomes. Fortunately, the region encompassing the Gpc-6B1 locus showed an excellent conservation between the two genomes, facilitating the saturation of the target region of the wheat genetic map with molecular markers. These markers were used to map the Gpc-6B1 locus into a 0.3-cM interval flanked by PCR markers Xucw79 and Xucw71, and to identify five candidate genes within the colinear 64-kb region in rice.  相似文献   

19.
A genetic linkage map of durum wheat   总被引:20,自引:6,他引:14  
 A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR (polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for studies of genome organisation in small grain cereal species. Received: 5 January 1998 / Accepted: 31 March 1998  相似文献   

20.
Cytologically, the centromere is found at the very end of most Mus musculus chromosomes, co-localizing with an array of minor satellite sequences. It is separated from the euchromatin of the long arm by a large domain of heterochromatin, composed in part of arrays of major satellite sequences. We used oligonucleotide probes that specifically detect regions of sequence variation found in certain cloned minor satellite sequences. They detect a limited subset of the minor satellite arrays in the mouse genome, based on both pulsed-field gel electrophoresis and in situ hybridization data, and provide direct molecular genetic markers for individual centromeres in some inbred mouse strains. Array size polymorphisms detected by these probes map to positions consisten with the centromeres of chromosomes 1 and 14 in the BXD recombinant inbred (RI) strains. The genetic distances between these minor satellite arrays and loci on the long arms of chromosomes 1 and 14 are consistent with repression of meiotic recombination in the heterochromatic domains separating them. The existence of chromosome-specific minor satellite sequences implies that the rate of sequence exchange between non-homologous chromosomes relative to the rate between homologous chromosomes is much lower than has previously been postulated. We suggest that the high degree of sequence homogeneity of mouse satellite sequences may instead reflect recent common ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号