首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field-collected South African Culicoides species (Diptera, Ceratopogonidae) were fed on sheep blood containing bluetongue virus (BTV) represented by 13 low-passage reference serotypes: -1, -2, -4, -6, -7, -8, -9, -10, -11, -12, -13, -16 and -19. After 10 days of extrinsic incubation at 23.5 degrees C, of the 13 serotypes used, seven were recovered from C. (Avaritia) imicola Kieffer and 11 from C. (A.) bolitinos Meiswinkel. Virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. In addition, BTV was recovered from three non-Avaritia Culicoides species, namely C. (Remmia) enderleini Cornet & Brunhes (BTV-9), C. (Hoffmania) milnei Austen (BTV-4) and C. (H.) zuluensis de Meillon (BTV-16). No virus could be recovered from 316 individuals representing a further 14 Culicoides species. In Culicoides species fed on blood containing similar or identical virus titres of distinct BTV serotypes, significant differences were found in virus recovery rates. The results of this study confirm the higher vector competence of C. bolitinos compared with C. imicola.  相似文献   

2.
The housing of animals at night was investigated as a possible means of protecting them from attack by Culicoides biting midges (Diptera: Ceratopogonidae), the vectors of bluetongue. Light-trap catches of Culicoides were compared inside and outside animal housing, in the presence and absence of cattle. A three-replicate, 4 × 4 Latin square design was used at four farms in Bala, north Wales, over 12 nights in May and June 2007, and the experiment repeated in October. In the two studies, respectively, >70 000 and >4500 Culicoides were trapped, of which 93% and 86%, respectively, were of the Culicoides obsoletus group. Across the four farms, in May and June, the presence of cattle increased catches of C. obsoletus by 2.3 times, and outside traps caught 6.5 times more insects than inside traps. Similar patterns were apparent in October, but the difference between inside and outside catches was reduced. Catches were strongly correlated with minimum temperature and maximum wind speed and these two variables explained a large amount of night-to-night variation in catch. Outside catches were reduced, to a greater extent than inside catches, by colder minimum temperatures and higher maximum wind speeds. These conditions occur more frequently in October than in May and June, thereby suppressing outside catches more than inside catches, and reducing the apparent degree of exophily of C. obsoletus in autumn. The results suggest that the risk of animals receiving bites from C. obsoletus is reduced by housing at both times of year and the benefit would be greatest on warm, still nights when outside catches are at their greatest.  相似文献   

3.
Abstract. The oral susceptibility of 22 South African livestock associated Culicoides species to infection with bluetongue virus serotype 1 (BTV‐1) and its replication rate in C. imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae) over a range of different incubation periods and temperatures are reported. Field‐collected Culicoides were fed on sheep blood containing 7.5 log10TCID50/mL of BTV‐1, and then held at constant different temperatures. Virus replication was measured over time by assaying individual flies in BHK‐21 cells using a microtitration procedure. Regardless of the incubation temperatures (10, 15, 18, 23.5 and 30°C) the mean virus titre/midge, infection rates (IR) and the proportion of infected females with transmission potential (TP = virus titre/midge ≥ 3 log10 TCID50) were found to be significantly higher in C. bolitinos than in C. imicola. Results from days 4–10 post‐infection (dpi), at 15–30°C, shows that the mean IR and TP values in C. bolitinos ranged from 36.7 to 87.8%, and from 8.4 to 87.7%, respectively; in C. imicola the respective values were 11.0–13.7% and 0–46.8%. In both species the highest IR was recorded at 25°C and the highest TP at 30°C. The time required for the development of TP in C. bolitinos ranged from 2 dpi at 25°C to 8 dpi at 15°C. In C. imicola it ranged from 4 dpi at 30°C to 10 dpi at 23.5°C; no individuals with TP were detected at 15°C. There was no evidence of virus replication in flies held at 10°C. When, at various points of incubation, individual flies were transferred from 10°C to 23.5°C and then assayed 4–10 days later, virus was recovered from both species. The mean virus titres/midge, and proportion of individuals with TP and IR, were again significantly higher in C. bolitinos than in C. imicola. Also the infection prevalence in C. magnus Colaço was higher than in C. imicola. Low infection prevalences were found in C. bedfordi Ingram & Macfie, C. leucostictus Kieffer, C. pycnostictus Ingram & Macfie, C. gulbenkiani Caeiro and C. milnei Austen. BTV‐1 was not detected in 14 other Culicoides species tested; however, some of these were tested in limited numbers. The present study indicates a multivector potential for BTV transmission in South Africa. In C. imicola and C. bolitinos the replication rates are distinct and are significantly influenced by temperature. These findings are discussed in relation to the epidemiology of bluetongue in South Africa.  相似文献   

4.
Surveillance of Culicoides (Diptera: Ceratopogonidae) biting midge vectors was carried out at 87 sites within a 50 x 50 km grid distributed across Portugal, using light trap collections at the time of peak midge abundance. Culicoides imicola (Kieffer) made up 66% of the 55 937 Culicoides in these summer collections. It was highly abundant in the central eastern portion of Portugal, between 37 degrees 5' N and 41 degrees 5' N, and in a band across to the Lisbon peninsula (at around 38 degrees 5' N). Of all the complexes, its distribution was most consistent with that of previous outbreaks of Culicoides-borne disease, suggesting that it may remain the major vector in Portugal. Its distribution was also broadly consistent with that predicted by a recent climate-driven model validating the use of remote sensing datasets for modelling of Culicoides distribution. Adult C. imicola were found to have overwintered at 12 of 20 sites re-surveyed in winter but it did so in very low numbers. Culicoides obsoletus (Meigen) and Culicoides pulicaris (Linnaeus) complex midges were widespread despite their low summer abundance. The observed coincidence of high abundances of C. imicola and high abundances of C. pulicaris in summer lead us to suggest that C. imicola could bring African horse sickness virus or bluetongue virus into contact with C. pulicaris and the latter complex, together with C. obsoletus, could then transmit these viruses across much wider areas of Europe. The fact that adult C. pulicaris are present in high abundances in winter may provide a mechanism by which these viruses can overwinter in these areas.  相似文献   

5.
6.
Abstract.  Two experiments were undertaken to estimate the transmission rates of bluetongue virus (BTV) serotype 1 between a biting midge vector, Culicoides sonorensis (Wirth & Jones) (Ceratopogonidae), and a natural host, sheep. In an experiment to measure the transmission rate from vector to host (V→H), six batches of one, five and 20 intrathoracically infected midges were fed on a total of 18 bluetongue (BT)-naïve sheep. The sheep were then monitored for 21 days for clinical signs of BT, viraemia and antibody response. All sheep fed on by five or 20 midges and five of six sheep fed on by just one midge showed signs of BT, were viraemic and developed antibody. The sixth sheep fed on by a single infected midge did not show signs of BT or have detectable viraemia; it did, however, develop a weak antibody response. A bite from a single infected midge is therefore able to transmit BTV to naïve sheep with 80–100% efficiency. Sheep fed upon by larger numbers of infected midges took less time to reach maximum viraemia and developed stronger antibody responses. Sheep exposed to greater amounts of BTV in feeding midges developed a higher level of viraemia and stronger antibody responses. In a second experiment to measure the transmission rate from host to vector (H→V), batches of up to 500 uninfected female C. sonorensis fed every 1–2 days on two experimentally infected sheep during the course of infection. Of 3929 engorged midges that were individually titrated after surviving the extrinsic incubation period, only 23 (0.6%) were infected with BTV. Viraemia in the sheep extended for up to 19 days post-inoculation. No infected midges, however, were detected from 14 days post-infection.  相似文献   

7.
Culicoides peregrinus (Kieffer) (Diptera: Ceratopogonidae) was reared from egg to adult using four different combinations of food and substrate (T1: absorbent cotton, mud broth with 2% yeast; T2: 1% agar, mud broth with 2% yeast; T3: absorbent cotton, nutrient broth; T4: absorbent cotton, 2% yeast). Field‐collected engorged females exhibited mean fecundity of 82.45 ± 4.00. The highest rate of emergence and largest adults were obtained in T1, and the lowest rate of emergence was observed in T4. Two‐way analyses of variance with post hoc Tukey tests showed significant differences in age at pupation, pupal weight and wing length among the various treatments, although the sex ratio was 1 : 1 in all food/substrate combinations. The successful rearing of immature C. peregrinus is an encouraging step towards the establishment of a laboratory colony of this prevalent species associated with livestock.  相似文献   

8.
Abstract. In 1991, as part of an epidemiological study of bluetongue viruses (BTV) in the Central American and Caribbean region, eight farms located in Costa Rica, Honduras, Panama and Puerto Rico were sampled for Culicoides spp. attacking cattle. Using cattle bait, 3884 biting midges were collected with an electric aspirator during both crepuscular periods. The predominant species captured was Culicoides insignis Lutz (95%), followed by C.furens (Poey) (3.4%), C.filarifer Hoffman/ C.ocumarensis Ortiz (0.9%), C.lahillei (Iches) (0.7%), C.arubae Fox and Hoffman (<0.1%) and C.gorgasi Wirth and Blanton (<0.1%). Blood-engorged specimens from some of these species were collected and comprised: 18% of all C.insignis , 36% of C.furens , 37% of filarifer/ocumarensis and 25% of C.lahillei. No engorged C.arubae or C.gorgasi were caught. These results confirm earlier findings pointing to C.insignis, C.furens and C.filarifer/ ocumarensis as potential vectors of BTV in the region.  相似文献   

9.
Surveillance data from 268 sites in Sicily are used to develop climatic models for prediction of the distribution of the main European bluetongue virus (BTV) vector Culicoides imicola Kieffer (Diptera: Ceratopogonidae) and of potential novel vectors, Culicoides pulicaris Linnaeus, Culicoides obsoletus group Meigen and Culicoides newsteadi Austen. The models containing the 'best' climatic predictors of distribution for each species, were selected from combinations of 40 temporally Fourier-processed remotely sensed variables and altitude at a 1 km spatial resolution using discriminant analysis. Kappa values of around 0.6 for all species models indicated substantial levels of agreement between model predictions and observed data. Whilst the distributions of C. obsoletus group and C. newsteadi were predicted by temperature variables, those of C. pulicaris and C. imicola were determined mainly by normalized difference vegetation index (NDVI), a variable correlated with soil moisture and vegetation biomass and productivity. These models were used to predict species presence in unsampled pixels across Italy and for C. imicola across Europe and North Africa. The predicted continuous presence of C. pulicaris along the appenine mountains, from north to south Italy, suggests BTV transmission may be possible in a large proportion of this region and that seasonal transhumance (seasonal movement of livestock between upland and lowland pastures) even in C. imicola-free areas should not generally be considered safe. The predicted distribution of C. imicola distribution shows substantial agreement with observed surveillance data from Greece and Iberia (including the Balearics) and parts of mainland Italy (Lazio, Tuscany and areas of the Ionian coast) but is generally much more restricted than the observed distribution (in Sardinia, Corsica and Morocco). The low number of presence sites for C. imicola in Sicily meant that only a restricted range of potential C. imicola habitats were included in the training set and that predictions could only be made within this range. Future modelling exercises will use abundance data collected according to a standardized protocol across the Mediterranean and, for Sicily in particular, should include non-climatic environmental variables that may influence breeding site suitability such as soil type.  相似文献   

10.
Data obtained by a Spanish national surveillance programme in 2005 were used to develop climatic models for predictions of the distribution of the bluetongue virus (BTV) vectors Culicoides imicola Kieffer (Diptera: Ceratopogonidae) and the Culicoides obsoletus group Meigen throughout the Iberian peninsula. Models were generated using logistic regression to predict the probability of species occurrence at an 8-km spatial resolution. Predictor variables included the annual mean values and seasonalities of a remotely sensed normalized difference vegetation index (NDVI), a sun index, interpolated precipitation and temperature. Using an information-theoretic paradigm based on Akaike's criterion, a set of best models accounting for 95% of model selection certainty were selected and used to generate an average predictive model for each vector. The predictive performances (i.e. the discrimination capacity and calibration) of the average models were evaluated by both internal and external validation. External validation was achieved by comparing average model predictions with surveillance programme data obtained in 2004 and 2006. The discriminatory capacity of both models was found to be reasonably high. The estimated areas under the receiver operating characteristic (ROC) curve (AUC) were 0.78 and 0.70 for the C. imicola and C. obsoletus group models, respectively, in external validation, and 0.81 and 0.75, respectively, in internal validation. The predictions of both models were in close agreement with the observed distribution patterns of both vectors. Both models, however, showed a systematic bias in their predicted probability of occurrence: observed occurrence was systematically overestimated for C. imicola and underestimated for the C. obsoletus group. Average models were used to determine the areas of spatial coincidence of the two vectors. Although their spatial distributions were highly complementary, areas of spatial coincidence were identified, mainly in Portugal and in the southwest of peninsular Spain. In a hypothetical scenario in which both Culicoides members had similar vectorial capacity for a BTV strain, these areas should be considered of special epidemiological concern because any epizootic event could be intensified by consecutive vector activity developed for both species during the year; consequently, the probability of BTV spreading to remaining areas occupied by both vectors might also be higher.  相似文献   

11.
Bluetongue (BT) is an infectious disease of ruminants that has spread northwards in Europe during the last decade. The aetiological agent of the disease is an arbovirus [bluetongue virus (BTV)] that belongs to the genus Orbivirus (family Reoviridae). The virus is transmitted by certain species of biting midge within the genus Culicoides (Diptera: Ceratopogonidae). Information on the vector status of the Culicoides species in a specific area will be essential to predict the risk for BTV incursion. Field-collected Culicoides (Avaritia) imicola Kieffer from South Africa were fed on blood containing several Spanish isolates of BTV. Despite the high virus concentrations in the bloodmeal (5.1-6.4 log(10) TCID(50) /mL of blood), virus was recovered from <1% of midges assayed after incubation. Virus concentrations >2.5 log(10) TCID(50) /midge in individual infected C. imicola suggest virus replication with possible risk for transmission to susceptible vertebrate hosts in the field for at least two of the serotypes assayed (BTV-1 and BTV-2). A third serotype (BTV-4) was very close to the estimated threshold for transmission. The relatively low to near refractory status of C. imicola compared with other vector species such as Culicoides bolitinos supports previous results, indicating that Culicoides species other than C. imicola may play a more important role in the epidemiology of BTV.  相似文献   

12.
A preliminary study was undertaken to investigate how the number of sheep below a light‐suction trap affects the number of female Culicoides obsoletus Meigen (Diptera: Ceratopogonidae) caught. As the number of sheep increased from zero to three, the number of midges caught increased, but there appeared to be no further increase when six sheep were used. The lack of increase between three and six sheep is attributable to different activity rates on certain nights, perhaps in response to weather, and suggests, therefore, that catches in light traps increase linearly with sheep numbers, at least for small host numbers.  相似文献   

13.
The importation of infected hosts and the arrival of windborne infected Culicoides (Diptera: Ceratopogonidae) were considered unlikely mechanisms for bluetongue virus (BTV) incursion into a BTV‐free area during the recent BTV serotype 8 (BTV‐8) epidemic in northern Europe. Therefore, alternative mechanisms need to be considered. Air, sea and land transport networks continue to expand, and an important consequence of this is vector‐borne pathogen importation. One important aspect of bluetongue (BT) epidemiology not yet addressed is the potential movement of infected Culicoides via transport and trade networks. Therefore, a risk assessment model was constructed to assess the probability of a BTV outbreak as a consequence of the introduction of Culicoides via these networks. The model was applied to calculate the risk for a BTV‐8 epidemic in Spain in 2007 caused by the introduction of Culicoides from affected northern European countries. The mean weighted annual risk for an outbreak caused by transportation of a single vector from an affected northern European country varied from 1.8 × 10?7 to 3.0 × 10?13, with the highest risks associated with Culicoides imported from Belgium, the Netherlands, Germany and France. For this mechanism to pose a significant risk to BTV‐free countries, a large number of vectors would have to be transported.  相似文献   

14.
In 2006, a strain of bluetongue virus serotype 8 (BTV-8) of sub-Saharan origin was responsible for the first outbreaks in recorded history of clinical bluetongue disease (BT) in northern Europe. In this study, we examine the oral susceptibility of Culicoides (Avaritia) imicola Kieffer (Diptera: Ceratopogonidae) and other livestock-associated Culicoides species from southern Africa to infection with several strains of BTV-8. Following feeding using an artificial membrane-based method and incubation, virus was found in <1% of C. imicola individuals tested. Higher rates of susceptibility were found, however, for a variety of other South African species, including Culicoides (Avaritia) bolitinos Meiswinkel. Although these results do not preclude the role of C. imicola as a vector of BTV-8, its low susceptibility to BTV indicates that other less abundant Culicoides species may have the potential to play decisive roles in the epidemiology of this virus and should not be excluded from risk assessment studies.  相似文献   

15.
Following the first incursion of bluetongue virus (BTV) into Italy, the geographical and seasonal distribution of the biting midge Culicoides imicola Kieffer (Diptera: Ceratopogonidae), the main vector of BTV and African horse sickness virus, was investigated in two regions of central Italy (Lazio and Tuscany). Surveillance of Culicoides was carried out between July 2001 and December 2002 using light traps: 1917 collections were made in 381 trap sites, well distributed across both regions. During the survey, bluetongue outbreaks were recorded in both regions. Culicoides imicola was found in 89 (23%) trap sites, distributed fairly continuously along the whole western coastline, between 41.2697 degrees N and 44.05724 degrees N. It was found only occasionally inland and usually in low abundance, with catches of more than 1000 specimens per night found in only two sample sites and 74% of catches numbering fewer than 10 specimens. Adults were caught from March to mid December, with peaks ranging from the end of August to mid November. The coastal distribution and the presence of only few sites with year-round records of adult vectors suggests that colonization may have occurred recently, by passive wind-dispersal from external source areas (Sardinia and Corsica). Alternatively, the species may occur in established, previously undetected, autochthonous populations that are limited from extension inland and northern-ward within Lazio and Tuscany by cool winter temperatures.  相似文献   

16.
Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) is the primary North American vector of bluetongue virus (BTV), which can cause high morbidity and mortality in ruminant livestock or wildlife. Worldwide, most Culicoides surveillance relies on light (usually UV) traps typically placed near animals or larval development sites. However, the trapping method can cause sex, species and parity biases in collections. We collected C. sonorensis from three dairies in California using suction traps baited with CO2, UV light or CO2 + UV placed near animals, wastewater ponds, or in fields. Higher numbers of parous females were collected using CO2 + UV traps, although this difference was only significant on one dairy. UV traps were poor at collecting nulliparous females, but the addition of UV to a trap increased the abundance of males in a collection. Traps set in open fields collected significantly higher numbers of males and females than in either of the other two locations. In some cases, there was a significant interaction between the trap type and site. We discuss the limitations of traditional trapping methodologies for C. sonorensis and make suggestions for vector surveillance.  相似文献   

17.
Abstract .The susceptibility of field-collected Culicoides bolitinos to infection by oral ingestion of bluetongue virus serotypes 1, 3 and 4 (BLU 1, 3 and 4) was compared with that of field-collected C. imicola and laboratory reared C. variipennis sonorensis . The concentration of the virus per millilitre of bloodmeal was 105.0 and 106.0TCID50 for BLU 4 and 107.2TCID50 for BLU 1 and 3. Of 4927 C. bolitinos and 9585 C. imicola fed, 386 and 287 individual midges survived 10 days extrinsic incubation, respectively. Midges were assayed for the presence of virus using a microtitration assay on BHK-21 cells and/or an antigen capture ELISA. Infection prevalences for the different serotypes as determined by virus isolation ranged from 22.7 to 82.0% in C. bolitinos and from 1.9 to 9.8% in C. imicola; infection prevalences were highest for BLU 1, and lowest for BLU 4 in both species. The mean log10 TCID50 titre of the three BLU viruses per single fly was higher in C. bolitinos than in C. imicola . The results suggested that C. bolitinos populations are capable vectors of the BLU viruses in South Africa. A high correlation was found between virus isolation and ELISA results for the detection of BLU 1, and less for BLU 4; the ELISA failed to detect the presence of BLU 3 in infected flies. The C. v. sonorensis colonies had a significantly lower susceptibility to infection with BLU 1, 3 and 4 than C. bolitinos and C. imicola . However, since infection prevalence of C. v. sonorensis was determined only by ELISA, this finding may merely reflect the insensitivity of this assay at low virus titres, compared to virus isolation.  相似文献   

18.
Culicoides spp. biting midges (Diptera: Ceratopogonidae) are vectors of pathogens that have a significant economic impact on the livestock industry. White‐tailed deer (Odocoileus virginianus), a farmed species in the U.S.A., are susceptible to two Culicoides spp. borne orbiviruses: bluetongue virus and epizootic haemorrhagic disease virus. Elucidating host–vector interactions is an integral step in studying disease transmission. This study investigated the host range of Culicoides spp. present on a big game preserve in Florida on which a variety of Cervidae and Bovidae freely roam. Culicoides were captured with Centers for Disease Control and Prevention (CDC) miniature light traps run twice weekly on the preserve for 18 consecutive months (July 2015–December 2016). Host preference was quantified through forage ratios, based upon PCR‐based bloodmeal analysis of Culicoides spp. and overall animal relative abundance on the preserve. Culicoides stellifer preferentially fed on Cervus spp. and fallow deer (Dama dama) and displayed a relative avoidance of Bovidae and white‐tailed deer. Culicoides debilipalpis preferred white‐tailed deer and avoided all Bovidae. Culicoides pallidicornis and Culicoides biguttatus showed preferences for white‐tailed deer and Père David's deer (Elaphurus davidianus), respectively. These results add to current knowledge of preferred hosts of Florida Culicoides spp. and have implications for the spread of orbiviruses. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
The influence of temperature on the likelihood of Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) transmitting African horse sickness virus (AHSV) serotypes 4 and 6, bluetongue virus (BTV) serotypes 10 and 16 and epizootic haemorrhagic disease of deer virus (EHDV) serotype 1 was investigated. Extrinsic incubation periods (EIP), vector competence and vector survival were determined at 15, 20, 25 and 30 degrees C. The effect of humidity on vector survival was also investigated by maintaining adult C. sonorensis at 40, 75 and 85% r.h. at each temperature. Higher temperatures were associated with a shorter EIP for all virus serotypes except AHSV6, to which C. sonorensis was orally refractory, increased vector competence for AHSV4 and EHDV1, but not for BTV10 or BTV16, and a reduction in vector survival. Humidity interacted with temperature in influencing vector survival, such that at low temperatures, lower humidity (40 and 75% r.h.) was detrimental for survival (up to 18% reduction in longevity), whereas at high temperatures, high humidity (85% r.h.) was detrimental (up to 36% reduction in longevity). In general, the transmission potential of C. sonorensis for AHSV4, EHDV1, BTV10 and BTV16 was greater at higher temperatures, because although vector survival was reduced, this was more than compensated for by the accompanying decrease in duration of the EIP.  相似文献   

20.
The recent emergence of bluetongue virus (Reoviridae: Orbivirus) (BTV) in northern Europe, for the first time in recorded history, has led to an urgent need for methods to control the disease caused by this virus and the midges that spread it. This paper reviews various methods of vector control that have been employed elsewhere and assesses their likely efficacy for controlling vectors of BTV in northern Europe. Methods of controlling Culicoides spp. (Diptera: Ceratopogonidae) have included: (a) application of insecticides and pathogens to habitats where larvae develop; (b) environmental interventions to remove larval breeding sites; (c) controlling adult midges by treating either resting sites, such as animal housing, or host animals with insecticides; (d) housing livestock in screened buildings, and (e) using repellents or host kairomones to lure and kill adult midges. The major vectors of BTV in northern Europe are species from the Culicoides obsoletus (Meigen) and Culicoides pulicaris (L.) groups, for which there are scant data on breeding habits, resting behaviour and host-oriented responses. Consequently, there is little information on which to base a rational strategy for controlling midges or for predicting the likely impact of interventions. However, data extrapolated from the results of vector control operations conducted elsewhere, combined with some assessment of how acceptable or not different methods may be within northern Europe, indicate that the treatment of livestock and animal housing with pyrethroids, the use of midge-proofed stabling for viraemic or high-value animals and the promotion of good farm practice to at least partially eliminate local breeding sites are the best options currently available. Research to assess and improve the efficacy of these methods is required and, in the longer term, efforts should be made to develop better bait systems for monitoring and, possibly, controlling midges. All these studies will need better methods of analysing the ecology and behaviour of midges in the field than are currently in use. The paucity of control options and basic knowledge serve to warn us that we must be better prepared for the possible emergence of other midge-borne diseases, particularly African horse sickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号