共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management
下载免费PDF全文

Christopher M. Ference Alberto M. Gochez Franklin Behlau Nian Wang James H. Graham Jeffrey B. Jones 《Molecular Plant Pathology》2018,19(6):1302-1318
Taxonomic status : Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range : Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties : Xcc is a rod‐shaped (1.5–2.0 × 0.5–0.75 µm), Gram‐negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution : Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe. 相似文献
2.
Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction
下载免费PDF全文

Juliana Artier Flávia da Silva Zandonadi Flávia Maria de Souza Carvalho Bianca Alves Pauletti Adriana Franco Paes Leme Carolina Moretto Carnielli Heloisa Sobreiro Selistre‐de‐Araujo Maria Célia Bertolini Jesus Aparecido Ferro José Belasque Júnior Julio Cezar Franco de Oliveira Maria Teresa Marques Novo‐Mansur 《Molecular Plant Pathology》2018,19(1):143-157
Citrus canker is a plant disease caused by Gram‐negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm‐enriched fraction was performed for XAC cells grown in pathogenicity‐inducing (XAM‐M) and pathogenicity‐non‐inducing (nutrient broth) media using two‐dimensional electrophoresis combined with liquid chromatography‐tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up‐regulated proteins related to cellular envelope metabolism included glucose‐1‐phosphate thymidylyltransferase, dTDP‐4‐dehydrorhamnose‐3,5‐epimerase and peptidyl‐prolyl cis–trans‐isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real‐time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up‐regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60‐kDa chaperonin and glyceraldehyde‐3‐phosphate dehydrogenase were identified, suggesting the presence of post‐translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence‐related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. 相似文献
3.
Responsiveness of different citrus genotypes to the Xanthomonas citri ssp. citri‐derived pathogen‐associated molecular pattern (PAMP) flg22 correlates with resistance to citrus canker
下载免费PDF全文

Qingchun Shi Vicente J. Febres Jeffrey B. Jones Gloria A. Moore 《Molecular Plant Pathology》2015,16(5):507-520
4.
XacFhaB adhesin,an important Xanthomonas citri ssp. citri virulence factor,is recognized as a pathogen‐associated molecular pattern
下载免费PDF全文

Betiana S. Garavaglia Tamara Zimaro Luciano A. Abriata Jorgelina Ottado Natalia Gottig 《Molecular Plant Pathology》2016,17(9):1344-1353
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non‐fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753‐residue‐long protein with a predicted β‐helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino‐terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen‐associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non‐host plants, with a stronger activation by the carboxyl‐terminal region. Furthermore, pre‐infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control. 相似文献
5.
6.
Baptista JC Machado MA Homem RA Torres PS Vojnov AA do Amaral AM 《Genetics and molecular biology》2010,33(1):146-153
The Gram-negative bacterium Xanthomonas axonopodis pv. citri, the causal agent of citrus canker, is a major threat to the citrus industry worldwide. Although this is a leaf spot pathogen, it bears genes highly related to degradation of plant cell walls, which are typically found in plant pathogens that cause symptoms of tissue maceration. Little is known on Xac capacity to cause disease and hydrolyze cellulose. We investigated the contribution of various open reading frames on degradation of a cellulose compound by means of a global mutational assay to selectively screen for a defect in carboxymethyl cellulase (CMCase) secretion in X. axonopodis pv. citri. Screening on CMC agar revealed one mutant clone defective in extracellular glycanase activity, out of nearly 3,000 clones. The insertion was located in the xpsD gene, a component of the type II secretion system (T2SS) showing an influence in the ability of Xac to colonize tissues and hydrolyze cellulose. In summary, these data show for the first time, that X. axonopodis pv. citri is capable of hydrolyzing cellulose in a T2SS-dependent process. Furthermore, it was demonstrated that the ability to degrade cellulose contributes to the infection process as a whole. 相似文献
7.
柑橘溃疡病对柑橘产业造成了巨大损失,而研究柑橘与溃疡病菌的互作关系以及柑橘的感病和抗病性均需要观察溃疡病菌在柑橘寄主中的侵染和定殖过程。激光共聚焦扫描显微镜不仅可以观察活细胞,活组织的动态代谢过程,而且可以获得三维图像,对于病原菌在柑橘植物组织内的繁殖和致病机制研究具有重要意义。但是,选择适宜的植物材料和制片方法对激光共聚焦扫描显微镜的观察效果影响很大。本文对激光共聚焦扫描显微镜所观察的材料在其处理和观察方法上加以改进,获得了质量更好的图片和实验结果,也使得实验更为方便快捷。激光共聚焦扫描显微观察还在瞬时表达分析中得到应用,提高了柑橘瞬时表达分析的效果。通过将切片和压片相结合观察到溃疡病菌在不同时间点对柑橘叶片的侵染情况,而通过3D建模能观察到柑橘叶片不同组织层面中的病菌数量和病菌位置,为研究溃疡病菌在叶片中的定殖方式和入侵数量提供了前期基础。 相似文献
8.
Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy‐associated vacuolar processes
下载免费PDF全文

Roxana A. Roeschlin María A. Favaro María A. Chiesa Sergio Alemano Adrián A. Vojnov Atilio P. Castagnaro María P. Filippone Frederick G. Gmitter jr José Gadea María R. Marano 《Molecular Plant Pathology》2017,18(9):1267-1281
9.
Twenty-four strains of Xanthomonas axonopodis pv. citri ( Xac ), the causal agent of bacterial canker of citrus, isolated from Mexican lime ( Citrus aurantifolia ) and lemon ( Citrus limon ) in southern Iran, were characterized phenotypically. Strains were all pathogenic on C. aurantifolia . Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis revealed slight differences in soluble protein profiles among the strains. Based on host range specificity and phenotypic characteristics, representative strains were differentiated into two groups of Asiatic (A) and atypical Asiatic (aA) forms. DNA fingerprinting analysis using Eco RI as the restriction endonuclease showed a negligible difference in restriction pattern between the two groups. On the basis of isozymic analysis, the two groups were distinct with respect to superoxide dismutase (SOD) and esterase (EST) banding patterns. Plasmid DNA profile analysis showed that the bacterial strains were different from each other in terms of plasmid number and molecular weight. Phage typing study revealed that most of group A strains were susceptible to Cp1 and/or Cp2 and some were resistant to both phage types including the strain in aA group. Bacteriocin production test indicated that there was a variation among Xac strains using different indicators for each bacteriocin producer. It is concluded that the Iranian strains of Xac are heterogeneous and constitute a subgroup(s) within the pathotype A. 相似文献
10.
11.
12.
In this study, we used real-time quantitative PCR (RT-qPCR) to evaluate the expression of 32 genes of Xanthomonas axonopodis pv. citri related to pathogenicity and virulence that are also involved in copper detoxification. Nearly all of the genes were up-regulated, including copA and copB. Two genes homologous to members of the type II secretion system (xcsH and xcsC) and two involved in the degradation of plant cell wall components (pglA and pel) were the most expressed in response to an elevated copper concentration. The type II secretion system (xcs operon) and a few homologues of proteins putatively secreted by this system showed enhanced expression when the bacteria were exposed to a high concentration of copper sulfate. The enhanced expression of the genes of secretion II system during copper stress suggests that this pathway may have an important role in the adaptative response of X. axonopodis pv. citri to toxic compounds. These findings highlight the potential role of these genes in attenuating the toxicity of certain metals and could represent an important means of bacterial resistance against chemicals used to control diseases. 相似文献
13.
Xanthomonas citri ssp. citri (Xcc) causes citrus canker, one of the most economically damaging diseases affecting citrus worldwide. Biofilm formation is important for the pathogen to survive epiphytically in planta prior to the induction of canker symptoms. In this study, two EZ-Tn5 transposon mutants of Xcc strain 306, affected in biofilm formation, were isolated; subsequent analyses led to the identification of a novel gene locus XAC3596 (designated as wxacO), encoding a putative transmembrane protein, and the rfbC gene, encoding a truncated O-antigen biosynthesis protein. Sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed that lipopolysaccharide (LPS) biosynthesis was affected in both wxacO and rfbC mutants. The wxacO mutant was impaired in the formation of a structured biofilm on glass or host plant leaves, as shown in confocal laser scanning microscopy analysis of strains containing a plasmid expressing the green fluorescent protein. Both wxacO and rfbC mutants were more sensitive than the wild-type strain to different environmental stresses, and more susceptible to the antimicrobial peptide polymyxin B. The two mutants were attenuated in swimming motility, but not in flagellar formation. The mutants also showed reduced virulence and decreased growth on host leaves when spray inoculated. The affected phenotypes of the wxacO and rfbC mutants were complemented to wild-type levels by the intact wxacO and rfbC genes, respectively. This report identifies a new gene influencing LPS production by Xcc. In addition, our results suggest that a structurally intact LPS is critical for survival in the phyllosphere and for the virulence of Xcc. 相似文献
14.
To study population dynamics of Xanthomonas citri subsp. citri (Xcc) in citrus canker lesions on fruit, a needle‐free injector was used for infiltration of bacterial inoculum into fruit in situ on mature ‘Ruby Red’ grapefruit (Citrus paradisi Macf.) trees in Florida. Inoculations of Xcc at 105 colony‐forming units (cfu) per ml were conducted in 2012 and 2013 on attached fruit varying from 15 mm to 90 mm in diameter. Inoculations were repeated every 2–3 weeks until the fruit were no longer injectable. On fruit less than 40 mm in size, erumpent lesions formed within 2 weeks of inoculation and expanded 1–9 mm in diameter from 30 to 120 days postinoculation (dpi). Xcc populations in lesions were 6–8 log cfu per lesion at 30 dpi and maintained this population up to 90 dpi. By 120 dpi, Xcc populations declined 1–3 log units as rainfall and temperature decreased in September–October. Xcc populations declined to ~3 log cfu per lesion after 120 dpi in November 2012 and 2013, whereas the population resurged to 5 log cfu per lesion after 180 dpi in January–February 2014. 相似文献
15.
Eduardo Hilario Sawyer De Keyser Li Fan 《Acta Crystallographica. Section D, Structural Biology》2020,76(8):778-789
The genus Xanthomonas comprises several cosmopolitan plant‐pathogenic bacteria that affect more than 400 plant species, most of which are of economic interest. Citrus canker is a bacterial disease that affects citrus species, reducing fruit yield and quality, and is caused by the bacterium Xanthomonas citri subsp. citri (Xac). The Xac3819 gene, which has previously been reported to be important for citrus canker infection, encodes an uncharacterized glutathione S‐transferase (GST) of 207 amino‐acid residues in length (XacGST). Bacterial GSTs are implicated in a variety of metabolic processes such as protection against chemical and oxidative stresses. XacGST shares high sequence identity (45%) with the GstB dehalogenase from Escherichia coli O6:H1 strain CFT073 (EcGstB). Here, XacGST is reported to be able to conjugate glutathione (GSH) with bromoacetate with a Km of 6.67 ± 0.77 mM, a kcat of 42.69 ± 0.32 s−1 and a kcat/Km of 6.40 ± 0.72 mM−1 s−1 under a saturated GSH concentration (3.6 mM). These values are comparable to those previously reported for EcGstB. In addition, crystal structures of XacGST were determined in the apo form (PDB entry 6nxv ) and in a GSH‐bound complex (PDB entry 6nv6 ). XacGST has a canonical GST‐like fold with a conserved serine residue (Ser12) at the GSH‐binding site near the N‐terminus, indicating XacGST to be a serine‐type GST that probably belongs to the theta‐class GSTs. GSH binding stabilizes a loop of about 20 residues containing a helix that is disordered in the apo XacGST structure. 相似文献
16.
17.
Coletta-Filho HD Takita MA Souza AA Neto JR Destéfano SA Hartung JS Machado MA 《Journal of applied microbiology》2006,100(2):279-285
AIMS: To have a PCR-based detection method for Xanthomonas axonopodis pv. citri (Xac) using primers designed in a specific region of its genome. METHODS AND RESULTS: A Xac-specific region was identified inside the rpf gene cluster of strain IAPAR 306 in an analysis of its complete genomic sequence. Two primers were designed, Xac01 and Xac02, which, when used in a standard PCR assay, direct the amplification of a 581 bp fragment from DNA of strains belonging to Xac from different regions around the world including unusual American and Asian strains. This product was not observed when DNA from strains of the closely related X. a. aurantifolli and X. a. citrumelo were used as templates. Extracts prepared from 28 xanthomonads of other species, and epiphytic bacteria isolated from citrus also failed to produce products with these primers. Amplification was obtained from cells grown in vitro, from extracts of both fresh and dried citrus canker lesions and from washes of inoculated but asymptomatic leaf surfaces. In sensitivity tests, this PCR technique detected as few as 100 cells. CONCLUSIONS: Primers Xac01 and Xac02 provide specific and sensitive detection of Xac in all citrus tissues where the pathogen is found. SIGNIFICANCE AND IMPACT OF THE STUDY: This PCR-based diagnostic test is suitable for monitoring asymptomatic plants in areas where the bacteria is endemic, in plant quarantine and regulatory situations, and also for obtaining an accurate diagnosis in a very short time. These are important characteristics for any assay to be used for the management of citrus canker disease. 相似文献
18.
Muhammad Mohsin Raza Muhammad Aslam Khan Muhammad Atiq Rana Binyamin Makky Javaid 《Archives Of Phytopathology And Plant Protection》2013,46(11):1335-1348
Citrus canker epidemics were generated with 108?cfu/ml of Xanthomonas axonopodis pv. citri (ex Hasse) on Citrus limonia cv. China lemon, Citrus reticulate cv. kinnow, Citrus jambhiri, Citrus reticulate cv. Feutral’s early and Citrus limettioides using four inoculation techniques. Natural inoculum was also relied upon for infection. Overall, the injection infiltration method led to maximum disease generation followed by spray, pinprick and smear inoculation methods. Citrus canker incidence along with environmental data were recorded and subjected to stepwise regression analysis. Except relative humidity, the relationship of weekly air temperature (maximum and minimum), rainfall and wind speed with citrus canker disease development in all citrus cultivars was positively correlated and best explained by linear regression. Overall, two environmental variable model containing maximum and minimum air temperature fit the data well explaining 93% variability in disease development. The observed citrus canker incidence values and those predicted by the model were close in most of citrus cultivars. This two environmental variable model can be used to issue advance warning forecasts for the timely management of the citrus canker in Pakistan. 相似文献
19.
Casabuono A Petrocelli S Ottado J Orellano EG Couto AS 《The Journal of biological chemistry》2011,286(29):25628-25643
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response. 相似文献
20.
Eduardo Hilario Yang Li Dimitri Niks Li Fan 《Acta Crystallographica. Section D, Structural Biology》2012,68(7):846-853
Xanthomonas citri pv. citri (Xac) causes citrus canker and affects citrus agriculture worldwide. Functional genetic analysis has indicated that a putative general stress protein (XacGSP) encoded by the Xac2369 gene is involved in the bacterial infection. In this report, the crystal structure of XacGSP was determined to 2.5 Å resolution. There are four XacGSP molecules in the crystal asymmetric unit. Each XacGSP monomer folds into a six‐stranded antiparallel β‐barrel flanked by five α‐helices. A C‐terminal extension protrudes from the sixth β‐strand of the β‐barrel and pairs with its counterpart from another monomer to form a bridge between the two subunits of an XacGSP dimer. Two XacGSP dimers cross over each other to form a tetramer; the β‐barrels from one dimer contact the β‐barrels of the other, while the two bridges are distant from each other and do not make contacts. The three‐dimensional structure of the XacGSP monomer is very similar to those of pyridoxine 5‐phosphate oxidases, a group of enzymes that use flavin mononucleotide (FMN) as a cofactor. Consistent with this, purified XacGSP protein binds to both FMN and flavin adenine dinucleotide (FAD), suggesting that XacGSP may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant. 相似文献