首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non‐fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753‐residue‐long protein with a predicted β‐helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino‐terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen‐associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non‐host plants, with a stronger activation by the carboxyl‐terminal region. Furthermore, pre‐infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.  相似文献   

3.
Xanthomonas oryzae pv. oryzae (Xoo) rapidly triggers a hypersensitive response (HR) and non‐host resistance in its non‐host plant Nicotiana benthamiana. Here, we report that Agrobacterium tumefaciens strain GV3101 blocks Xoo‐induced HR in N. benthamiana when pre‐infiltrated or co‐infiltrated, but not when post‐infiltrated at 4 h after Xoo inoculation. This suppression by A. tumefaciens is local and highly efficient to Xoo. The HR‐inhibiting efficiency of A. tumefaciens is strain dependent. Strain C58C1 has almost no effect on Xoo‐induced HR, whereas strains GV3101, EHA105 and LBA4404 nearly completely block HR formation. Intriguingly, these three HR‐inhibiting strains employ different strategies to repress HR. Strain GV3101 displays strong antibiotic activity and thus suppresses Xoo growth. Comparison of the genotype and Xoo antibiosis activity of wild‐type A. tumefaciens strain C58 and a set of C58‐derived strains reveals that this Xoo antibiosis activity of A. tumefaciens is negatively, but not solely, regulated by the transferred‐DNA (T‐DNA) of the Ti plasmid pTiC58. Unlike GV3101, strains LBA4404 and EHA105 exhibit no significant antibiotic effect on Xoo, but rather abolish hydrogen peroxide accumulation. In addition, expression assays indicate that strains LBA4404 and EHA105 may inhibit Xoo‐induced HR by suppression of the expression of Xoo type III secretion system (T3SS) effector genes hpa1 and hrpD6. Collectively, our results unveil the multiple levels of effects of A. tumefaciens on Xoo in N. benthamiana and provide insights into the molecular mechanisms underlying the bacterial antibiosis of A. tumefaciens and the non‐host resistance induced by Xoo.  相似文献   

4.
Masaru Sakamoto 《FEBS letters》2009,583(15):2552-2556
In this study, we characterized a Capsicum hypersensitive response (HR)-associated gene, SS52, which encodes a protein that contains an N-terminal C2 domain and a C-terminal XYPPX repeat. Expression analyses revealed that SS52 and its homologue in Arabidopsis were induced by infection with incompatible viruses, indicating the conserved function of this gene. SS52 was not induced by treatment with defense-related hormones, but was induced by abiotic stresses, including wounding. Overexpression of SS52 in tobacco plants suppressed the spread of HR cell death and restricted the spread of an incompatible virus from local lesions. Collectively, the results suggest that SS52 negatively regulates plant HR cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号