首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule- and actin-dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3-phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin-related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin-mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down-regulating actin-dependent melanosome movement by noradrenaline. Data from immuno-electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule- and actin-mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

2.
1. The effects of both adenyl cyclase inhibitors (MDL12330A and SQ22536) have been studied on the ionic transport induced by vasopressin and isoprenaline across the frog skin. 2. MDL12330A inhibits the vasopressin action on the short-circuit current (SCC), confirming that this effect is cAMP-mediated. 3. On the other hand, isoprenaline action on the SCC is unaffected by MDL12330A. However, this lack of effect is not a sufficient argument against the role of cAMP in this action; in fact, as MDL12330A is also an inhibitor of cAMP phosphodiesterase, this action could mask the inhibitory effect of the drug on adenyl cyclase. 4. By using the other adenyl cyclase inhibitor (SQ22536), probably deprived of effect on the cAMP phosphodiesterase, we obtained a strong inhibition of isoprenaline action on the SCC. Thus we conclude that the actions of isoprenaline on the ionic transport across the frog skin are also cAMP-mediated.  相似文献   

3.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule‐ and actin‐dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3‐phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin‐related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin‐mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down‐regulating actin‐dependent melanosome movement by noradrenaline. Data from immuno‐electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule‐ and actin‐mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

4.
The potential action of purines, such as hypoxanthine and adenosine, in meiotic arrest was examined using denuded mouse oocytes. The spontaneous meiotic maturation of denuded oocytes was significantly inhibited by hypoxanthine and/or adenosine in a dose-dependent manner. Germinal vesicle breakdown (GVBD) was inhibited even at a low concentration (1 nM) of hypoxanthine, when hypoxanthine was microinjected into the cytoplasm of denuded oocytes. This inhibitory action was potentiated by co-injection with allopurinol, a metabolic blocker of hypoxanthine that can block a metabolic pathway to uric acid. By contrast, a microinjection of adenosine was no longer effective in inhibiting GVBD. Inhibitory action of purines in meiotic maturation was correlated with sustaining intracellular cAMP levels. GVBD was resumed by econazole, one of the nitroimidazole derivatives which act as inhibitors of catalytic subunit of adenylate cyclase. This compound was effective in counteracting the effect of adenosine, but not the action of 3-isobutyl-1-methylxanthine (IBMX) on GVBD, indicating that adenosine is probably exerted at the level of oocyte plasmalemma. These data suggest that the inhibitory action of hypoxanthine and adenosine in oocyte meiotic maturation may be involved in the regulation of cAMP metabolism in a differential manner.  相似文献   

5.
T Mastrocola  M Rugolo 《Life sciences》1990,46(23):1661-1669
It has widely been established that Cl- transport is defective in cystic fibrosis fibroblasts. In the present study, the effect of elevation of intracellular concentration of cyclic AMP and calcium on the efflux of Cl- from human fibroblasts has been investigated. Cyclic AMP analogs (8-bromo cAMP and dibutyryl cAMP) and a beta agonist (isoproterenol) induced only a weak stimulation (5-10%) of Cl- efflux. Conversely, elevation of cytoplasmic calcium concentration produced by addition of the Ca2+ ionophore A23187 in the efflux medium, did not affect Cl- efflux. Our data indicate that the response of Cl- efflux to elevation of cAMP and calcium is similar in normal and cystic fibrosis fibroblasts. Exposure to hypotonic medium induced a significant stimulation of Cl- efflux in fibroblasts from both normal and cystic fibrosis individuals. Substitution of Cl- in the medium by gluconate and the subsequent addition of furosemide did not inhibit the effect of hypotonicity, indicating the involvement of a conductive pathway for Cl- transport, which was insensitive to oligomicin C.  相似文献   

6.
The antinociceptive actions of intrathecal injections of two alpha 2-adrenergic agonists, UK-14,304 and guanfacine, were investigated in rats after pretreatment of the animals with the noradrenaline neurotoxin N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4) 14 days in advance. The chronic noradrenaline depletion induced by DSP4 caused a marked increase in sensitivity of the antinociceptive action of UK-14,304 in the tail-flick test. By contrast, the antinociceptive effect of guanfacine was not appreciably affected by the DSP4 treatment. The antinociceptive effects of both UK-14,304 and guanfacine were blocked by intraperitoneal injections of yohimbine, a result indicating that both drugs induced their actions by activating alpha 2-adrenoceptors. Both UK-14,304 and guanfacine were found to reduce the production of cyclic AMP (cAMP) in the spinal cord, as determined using an in vitro radioisotopic method. The cAMP inhibitory effects of both agonists were effectively blocked by yohimbine, but not by prazosin, a finding indicating the alpha 2-adrenergic nature of the response. However, the cAMP inhibitory effect of UK-14,304 was not potentiated by pretreatment with DSP4, a finding in marked contrast with the strong potentiation of the antinociceptive action of UK-14,304 induced by the chronic depletion of endogenous noradrenaline. Moreover, intrathecal injections of forskolin, which increased the endogenous levels of spinal cord cAMP fivefold, did not modify the antinociceptive effects of UK-14,304 or guanfacine in neither normal nor DSP4-treated animals. It is suggested that there exist pharmacologically differing alpha 2-adrenergic receptor pathways capable of mediating antinociceptive effects at the level of the spinal cord. The cAMP inhibitory actions of spinal cord alpha 2-adrenoceptors appear not to be directly linked with the antinociceptive actions of these receptors.  相似文献   

7.
Cyclic nucleotide phosphodiesterase activity of several tissues of rat is inhibited by an endogenous factor isolated from rat adipocytes following exposure of these cells to agents that raise intracellular cyclic AMP levels. The inhibitory action was demonstrated with varying cAMP concentrations from 0.1-400 muM. Enzyme from 10,000 X g supernatant of epididymal adipose tissue was inhibited approximately 2-3 fold more than the plasma membrane of adipocytes by a given concentration of the feedback regulator. Kinetic analysis of cAMP phosphodiesterase of plasma membrane showed that feedback regulator (8.8 U/ml) inhibited the Vmax 48%. The maximum inhibition of phosphodiesterase by feedback regulator (20 U/ml) was about 80%. The apparent Km for cAMP was increased. The ability of phosphodiesterase from several tissues of rat (10,000 X g supernatant) to hydrolyze cAMP and cGMP was tested. Feedback regulator inhibited cGMP hydrolysis in cardiac muscle and 5 other tissues 23-92% more than it inhibited the hydrolysis of cAMP. The physiological significance of this inhibitory effect can begin to be clarified when the feedback regulator is purified to homogeneity and characterized.  相似文献   

8.
M Bounias 《Biochimie》1987,69(6-7):655-660
The hyperglycemic effects of vertebrate glucagon, octopamine and noradrenaline, are depressed when propranolol or somatostatin is simultaneously injected into emerging adult worker bees. The inhibitory action of the peptidic antagonist (somatostatin) is more marked against the peptidic agonist (glucagon) and the action of the aminergic antagonist (propranolol) is more marked against the aminergic agonist (octopamine). Somatostatin seems to be inactive against the hyperglycemic effects of cyclic AMP itself. Lastly, octopamine and cAMP might share a common stimulatory activity towards the honeybee's hemolymph trehalases.  相似文献   

9.
Basic and stimulated intracellular cAMP concentrations were measured in normal chicken liver and MC-29-virus-derived transplantable hepatoma (VTH) slices after in vitro incubation. Data indicated the preservation of catecholamine receptor but a loss of glucagon receptor in VTH. Comparing the relative stimulatory action of various catecholamines on cAMP concentration it was concluded that as in normal liver a predominantly beta 2-adrenergic receptor exists in the VTH, but its response to adrenaline is greater. Vinca alkaloids induced higher cAMP concentration in VTH than in normal liver. This stimulation was abolished by glucagon, while catecholamines and Vincristine acted in a synergistic manner on cAMP concentration.  相似文献   

10.
The effects of agents known to affect the cyclic AMP (cAMP) system in nervous tissue have been studied on the rapid axonal transport in vitro of [3H]leucine-labeled proteins in the frog sciatic nerve. The transport was inhibited by 3 different cAMP analogues; dibutyryl cAMP (1 mM), zeatin (0.5 mM), and zeatin riboside (0.5 mM), whereas another N6-substituted adenine derivative, N6-, isopentyl-adenine (DMA) (0.5 mM), and also dibutyryl cyclic GMP (1 mM), lacked effects. Two inhibitors of cAMP phosphodiesterases, papaverine and RO 207222, increased the level of cAMP in the nerve and arrested the transport. Papaverine was very potent and caused a reversible transport block at 0.05 mM. Adenosine (3 mM) increased the cAMP content about 16 times, much more than any of the other drugs tested, but only inhibited the transport by about 50%. Veratridine, a depolarizing agent, irreversibly blocked the transport at a low concentration (0.01 mM), which did not change the cAMP level. Transport inhibitory effects by another depolarizing substance, ouabain, and tricyclic psychotropic agent, chlorpromazine, have been described earlier. Ouabain (0.1 mM), in contrast to chlorpromazine (0.1 mM), caused a small increase in the cAMP content. The present results do not suggest the existence of a close relationship between rapid axonal transport and the cAMP system. Transport inhibitory effects due to disturbed energy metabolism will be discussed.  相似文献   

11.
It was shown that somatostatin (SRIF) inhibited cAMP-dependent vasoactive intestinal peptide (VIP)-stimulated prolactin (PRL) release by a GH3 clonal strain of rat pituitary tumor cells and decreased basal PRL secretion and inhibited PRL release in response to thyrotropin releasing hormone (TRH) whose action was independent of prior synthesis of cAMP. Pretreatment of these cells with pertussis toxin prevented SRIF's inhibitory effects on basal and TRH-stimulated hormone secretion as well as its VIP-stimulated responses. The blockade of SRIF's inhibitory effect on the actions of TRH or VIP was dependent on both the duration of preincubation and concentration of the toxin and was correlated with the ability of the toxin to catalyze the ADP-ribosylation of the 39,000-Da membrane protein. It is likely that this pertussis toxin substrate is involved in signal transduction of SRIF on cAMP-dependent actions of VIP and cAMP-independent action of TRH. However, the mechanism of SRIF's action on TRH is not clear, since SRIF did not affect the intracellular responses by TRH, neither intracellular Ca2+ mobilization nor the increase of 1,2-diacylglycerol formation following the breakdown of polyphosphoinositides.  相似文献   

12.
This study was conducted to shed light on the so far unexplored intracellular mechanisms underlying negative modulation of Leydig cell steroidogenesis by histamine (HA). Using the MA-10 cell line and highly purified rat Leydig cells as experimental models, we examined the effect of the amine on biochemical steps known to be modulated by HA or involved in LH/hCG action. In agreement with previous findings, HA at 10 microM showed a potent inhibitory effect on hCG-stimulated steroid synthesis, regardless of the gonadotropin concentration used. Moreover, HA decreased not only LH/hCG-induced cAMP production but also steroid synthesis stimulated by the permeable cAMP analog dibutyryl cAMP (db-cAMP). Considering the post-cAMP sites of HA action, it is shown herein that HA markedly inhibited db-cAMP-stimulated steroidogenic acute regulatory (STAR) protein expression, as well as steps catalyzed by P450-dependent enzymes, mainly the conversion of cholesterol to pregnenolone by cholesterol side-chain cleavage enzyme (CYP11A). The antisteroidogenic action of HA was blocked by addition of the phospholipase C (PLC) inhibitor U73122, and HA significantly augmented inositol triphosphate (IP3) production, suggesting a major role for the PLC/IP3 pathway in HA-induced inhibition of Leydig cell function. Finally, HA increased nitric oxide synthase (NOS) activity, and the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) markedly attenuated the effect of the amine on steroid synthesis. On the basis of our findings, HA antagonizes the gonadotropin action in Leydig cells at steps before and after cAMP formation. NOS activation is the main intracellular mechanism by which HA exerts its antisteroidogenic effects.  相似文献   

13.
The effect of cAMP and its dibutyryl analogue on the biosynthesis of nucleic acids and protein in active proliferating cells was studied. It was shown that cAMP (10(-3)--10(-4)M) caused stimulation of the biosynthesis of DNA and RNA in Ehrlich's ascites carcinoma (EAC) cells and intensification of collagen biosynthesis in the chick embryo cartilage tissue in vitro. Dibutyryl -- cAMP (10(-3)--10(-4)M) has an inhibitory action on the biosynthesis of macromolecules both in EAC cells and embryonic cartilage tissue. Addition of cAMP phosphodiesterase inhibitors together with cAMP to the incubation media prevents the stimulation of macromolecular biosynthesis observed under the influence of cAMP. Studies on cAMP metabolism revealed that this compound is rapidly catabolized to AMP and adenosine. The latter enters the cells and incorporates into the adenyl nucleotide intracellular pool. The stimulant action of exogenous cAMP is related to its extracellular metabolism rather than to the intracellular effects of the nucleotide.  相似文献   

14.
Inhibitory effects of cyclic adenosine monophosphate (cAMP) on calcium current (ICa) were investigated in experiments on unidentified neurons isolated fromHelix pomatia by means of voltage clamping techniques using two microelectrodes. Intracellular level of cAMP was raised by intracellular injection of this substance or by extracellular application of dibutyryl-cAMP or isobutylmethyl-xanthine. A set of neurons showing inhibitory effects of cAMP on ICa was used. Effects on barium current (IBa) of an equal extent were also revealed. Injection of cGMP through a double-barreled microelectrode into these neurons produced an increase in amplitude of ICa. Intracellular application of phorbol ester had no effect on this current, however. Intracellular injection of EGTA led to enhancement of ICa amplitude, but the inhibitory effect of cAMP persisted following the action of EGTA. Tolbutamide and H-8 (but to a lesser extent) inhibited ICa. The inhibitory effects of tolbutamide and dibutyryl cAMP were not found to be cumulative in six out of twelve instances. These findings would imply that the inhibitory action of cAMP on ICa is unassociated with activation of cAMP-dependent protein kinase, cGMP-dependent protein kinase or protein kinase C; nor does it depend on level of intracellular Ca2+. The possibility of direct interaction between cAMP and channel-forming protein is considered.Institute of Brain Research, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 54–61, January–February, 1990.  相似文献   

15.
In the experiments on isolated frog sartorius muscles, amines and amides were found to inhibit the process of stimulation of D-xylose transport induced by insulin, 2,4-dinitrophenol or potassium contracture. The inhibitory action was produced by urea, acetamide, guanidine, NH4Cl, mono-, di- and trimethyl- or ethylamines, some diamines (all the substances being, applied in the concentration range equal to 100 mM). The similar effect was obtained when cystamine (20 mM), tryptamine, 5-methoxytryptamine (2 mM) and adenine, adenosine, guanosine (1-10 mM) were used. There was no inhibitory effect of acetone, glycerol, tetraethylammonium, propilamine, butylamine, aminoacids, spermine, spermidine, ATP, AMP or cAMP. It has been suggested that the inhibitory substances may interact by producing hydrogen bonds from NH-groups with the neutrally or negatively charged groups at the external surface of the muscle membrane in the region with a slow hydrophobicity. As a result, no structural changes required for activation of the sugar transport system occur in the membrane.  相似文献   

16.
We studied the effect of noradrenaline on the methaemoglobin (metHb) concentration in rainbow trout red cells. The erythrocytes were incubated in physiological medium with or without noradrenaline and the percentage of metHb of total Hb content was measured. Noradrenaline lowered the metHb content significantly as compared to controls. To study if the effect of noradrenaline was caused by adrenergic intracellular alkalinization, cells were treated with noradrenaline + carbonic anhydrase or noradrenaline + acetazolamide. Carbonic anhydrase inhibits the adrenergic increase in intracellular pH, but did not reduce the effect of noradrenaline on the metHb concentration. Acetazolamide accentuates the increase in intracellular pH. However, there was no difference in the methaemoglobin content of noradrenaline-incubated and noradrenaline + acetazolamide-incubated cells. These results show that the effect of noradrenaline on the methaemoglobin content is independent from the adrenergic increase in intracellular pH. However, amiloride treatment inhibited the effect of noradrenaline on the methaemoglobin content, suggesting that the protein mediating sodium/proton exchange may also be involved in controlling cellular methaemoglobin levels.  相似文献   

17.
In has been shown that cortisol immobilized on polyvinylpyrrolidone (PVP-GC) affects cyclic AMP production stimulated by adenosine and isoproterenol in rat thymocytes. This effect of PVP-GC is specific for cortisol: antiglucocorticoid progesterone (at a concentration of 10(-5) M) inhibited completely the action of PVP-GC on the intracellular cAMP level. It is suggested that cortisol effect on cAMP production is one of the mechanisms of glucocorticoid hormone action in target cells.  相似文献   

18.
Summary The effect of papaverine, an inhibitor of the phosphodiesterase responsible for breakdown of cAMP, on the transepithelial sodium transport across the isolated frog skin was investigated.Serosal addition of papaverine caused initially an increase in the short-circuit current (SCC), a doubling of the cellular cAMP content and a depolarization of the intracellular potential under SCC conditions (V scc).The initial increase in the SCC was followed by a pronounced decrease both in the SCC and in the natriferic action of antidiuretic hormone (ADH), but papaverine had no inhibitory effect on the ability of ADH to increase the cellular cAMP content. As SCC declines, no hyperpolarization was observed.The I/V relationship across the apical membrane during the inhibitory phase, revealed that papaverine reduces the sodium permeability of the apical membrane (P Na a )as well as intracellular sodium concentration. These observations and the previously noted effect of papaverine on V scc indicates that papaverine must have an effect on the cellular Cl or K permeability.The basolateral Na,K,2Cl cotransporter was blocked with bumetanide, which should bring the cellular chloride in equilibrium. Bumetanide had no effect on basal SCC and V scc. When papaverine was added to skins preincubated with bumetanide, the effect of papaverine on SCC and V scc was unchanged. Therefore, the depolarization of V scc, observed during the papaverine induced inhibition of the SCC, must be due to a reduction in the cellular K permeability.In conclusion, it is suggested that papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane of the frog skin epithelium.  相似文献   

19.
It is important to identify the signal transduction pathway involved in the regulation of fluid reabsorption by the ductuli efferentes of the testis because they reabsorb most of the fluid leaving the testis and are essential for male fertility. Microperfusion studies of the ducts in vivo showed that 0.1 or 1.0 mM dibutyryl (db)-cGMP in the perfusate had no effect on fluid reabsorption, but 0.1 mM db-cAMP significantly reduced fluid reabsorption, 0.25 mM abolished reabsorption, and 0.5-1.0 mM caused secretion. The inhibitory effect of db-cAMP was reversible. Although the presence of db-cAMP in the perfusate did not affect the concentration of Na+ in the collectate, the concentrations of K(+) and Cl(-) increased, indicating that their transport is at least partly regulated by cAMP. Including the phosphodiesterase inhibitor pentoxifylline in the perfusate decreased fluid reabsorption by the ducts in a dose-dependent manner, and it also increased the concentration of cAMP (5.5-fold) in collectate. Pentoxifylline also increased the production of cAMP (4-fold) by ducts incubated in vitro. It is concluded that cAMP, but probably not cGMP, is an intracellular messenger regulating fluid reabsorption in the efferent ducts.  相似文献   

20.
An analogue of cyclic AMP (db-cAMP) penetrating into the frog neuromuscular junction's cell, as well as the adenylyl cyclase activator forskolin, and inhibitor of nucleotide-depending phosphodiesterase isobutilmethylxantine alter the kinetics of the quanta secretion resulting in synchronizing of the process of the transmitter release. Following a db-cAMP preliminary action, no such synchronizing of the transmitter release occurred. Action of noradrenaline on the time course of the secretion seems to be realised through activation of presynaptic beta-adrenoreceptors, augmentation of the adenylyl cyclase activity, and the rise of the intracellular cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号