首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the frog, the spontaneous discharges of afferent fibres from the horizontal semicircular canal (HC) and of efferent vestibular units were recorded by means of glass micropipettes filled with 2 mol/l NaCl as well as during acoustic stimulation; pure tones 300–2,000 Hz and clicks 150/s, 80–100 dB re 10–5 N/m2 were used. The activity of 56% of the efferent fibres recorded was increased by such stimulations while the discharge of the others was not modified. In intact preparations the activity of 34.4% of the afferent fibres recorded was either increased or decreased by sound stimulation depending on the unit; the discharge of the others (65.6%) was not modified (Fig. 3). Section of both saccular nerves did not change the percentage of the units modulated by sound showing that the saccules have probably no effect on this modulation (Fig. 4). In preparations where the contralateral auditory papillae were eliminated, 21.1% of the afferent units were facilitated and no unit was inhibited (Fig. 5), while in preparations where the ipsilateral auditory organs were eliminated 21.1% of the afferent units were inhibited and no unit was facilitated (Fig. 6). Therefore, in intact preparations one can assume that decrease and increase of the HC afferent fibre discharges were due to stimulation of the contralateral and the ipsilateral auditory organs, respectively. Such a modulation of canal afferent discharges being mediated by efferent vestibular fibres, it can be postulated that the efferent vestibular system has a double influence upon the hair cells of the vestibular epithelium: one inhibitory and the other facilitatory. Such a double effect is discussed.Abbreviations EVS efferent vestibular system - HC horizontal semicircular canal  相似文献   

2.
Gorodnov  V. L.  Ogannisyan  A. L. 《Neurophysiology》2004,36(3):200-206
We studied the interaction of synaptic effects in efferent (rubro-spinal) neurons (RSN) of the red nucleus (NR) of the cat brain using intracellular recording and different variants of stimulation of the cerebellar nucl. interpositus (NI) and nucl. ventrolateralis (VL) of the thalamus. Combined simultaneous or consequent stimulation of the above two inputs allowed us to use collision of the impulses in pre-synaptic pathways for estimation of the peculiarities of summation of post-synaptic potentials; it was taken into consideration that cerebello-rubral fibers are collaterals of the cerebello-thalamic axons. In the case of relatively low intensities of stimulation of the VL and NI, EPSP evoked by these stimulations in RSN could demonstrate linear summation, which is indicative of the absence of common fibers excited by stimulation of both the thalamic and cerebellar structures and of the absence of interaction of synaptic effects on the membrane of the postsynaptic unit (an RSN). With increased stimulation intensity and definite time relations between the stimuli applied to the above structures, the second EPSP evoked by the two stimuli was significantly suppressed; this resulted from a decrease of the afferent drive coming to the NR due to collision of afferent impulses in presynaptic pathways. When an interstimulus interval was increased, the second EPSP could be facilitated (probably due to generation of repetitive impulses in common presynaptic fibers). Our experiments show that the statement concerning the nature of cerebello-rubral inputs (all these inputs are formed by collaterals of the cerebello-(interposito)-thalamic pathways) should be considered with reservation.  相似文献   

3.
Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.Abbreviations BCA bulbar command associated nucleus - C EOD motor command - C3 central cerebellar lobule 3 - COM EOD motor command nucleus - DLZ dorsolateral zone of ELL cortex - EGa eminentia granularis anterior - EGp eminentia granularis posterior - ELa nucleus exterolateralis anterior - ELL electrosensory lobe - ELLml molecular layer of ELL cortex - EOD electric organ discharge - gang ganglion layer - gran granule layer - jlem juxtalemniscal region - JLl lateral juxtalobar nucleus - JLm medial juxtalobar nucleus - lat nucleus lateralis - ll lateral lemniscus - MCA mesencephalic command associated nucleus - mol molecular layer - MOml molecular layer of the medial octavolateral nucleus - MRN medullary relay nucleus - MZ medial zone of ELL cortex - nALL anterior lateral line nerve - NELL nucleus of the electrosensory lobe - nX cranial nerve X (vagus) - OT optic tectum - PCA paratrigeminal command associated nucleus - pee praeeminentialis electrosensory tract - plex plexiform layer - prae nucleus praeeminentialis - sublem sublemniscal nucleus - TEL telencephalon - VLZ ventrolateral zone of ELL cortex - vped valvular peduncle  相似文献   

4.
Gymnarchus niloticus, a wave-type African electric fish, performs its jamming avoidance response by relying solely upon afferent signals and does not use corollary discharges from the pacemaker nucleus in the medulla which generates the rhythmicity of electric organ discharges. This is in sharp contrast to the mode of sensory processing found in closely related African pulse-type electric fishes where afferent signals are gated by corollary discharges from the pacemaker for the distinction of exafferent and reafferent stimuli. Does Gymnarchus still possess a corollary discharge mechanism for other behavioral tasks but does not use it for the jamming avoidance response? In this study, I recorded from and labeled medullary neuronal structures that either generate or convey the pacemaker signal for electric organ discharges to examine whether this information is also sent directly to any sensory areas. The pacemaker nucleus was identified as the site of generation of the pacemaking signal. The pacemaker neurons project exclusively to the lateral relay nucleus which, in turn projects exclusively to the medial relay nucleus. Neurons in the medial relay nucleus send unbranched axons to the spinal electromotoneurons. These neurons are entirely devoted to drive the electric organ discharges, and no axon collaterals from these neurons were found to project to any sensory areas. This indicates that Gymnarchus does not possess the neuronal hardware for a corollary discharge mechanism.  相似文献   

5.
Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal  相似文献   

6.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers.  相似文献   

7.
The central nervous system modulates inflammation in the gastrointestinal tract via efferent vagal pathways. We hypothesized that these vagal efferents receive synaptic input from vagal afferents, representing an autonomic feedback mechanism. The consequence of this vagovagal reflex for afferent signal generation in response to LPS was examined in the present study. Different modifications of the vagal innervation or sham procedures were performed in anesthetized rats. Extracellular mesenteric afferent nerve discharge and systemic blood pressure were recorded in vivo before and after systemic administration of LPS (6 mg/kg iv). Mesenteric afferent nerve discharge increased dramatically following LPS, which was unchanged when vagal efferent traffic was eliminated by acute vagotomy. In chronically vagotomized animals, to eliminate both vagal afferent and efferent traffic, the increase in afferent firing 3.5 min after LPS was reduced to 3.2 +/- 2.5 impulses/s above baseline compared with 42.2 +/- 2.0 impulses/s in controls (P < 0.001). A similar effect was observed following perivagal capsaicin, which was used to eliminate vagal afferent traffic only. LPS also caused a transient hypotension (<10 min), a partial recovery, and then persistent hypertension that was exacerbated by all three procedures. Mechanosensitivity was increased 15 min following LPS but had recovered at 30 min in all subgroups except for the chronic vagotomy group. In conclusion, discharge in capsaicin-sensitive mesenteric vagal afferents is augmented following systemic LPS. This activity, through a vagovagal pathway, helps to attenuate the effects of septic shock. The persistent hypersensitivity to mechanical stimulation after chronic vagal denervation suggests that the vagus exerts a regulatory influence on spinal afferent sensitization following LPS.  相似文献   

8.
Summary The activation and action of the octavolateralis efferent system was studied by chronic recordings of discharge patterns from putative efferent and single primary afferent neurons in alert, free-swimming toadfish. Efferent axons isolated in the anterior lateral line nerve showed phasic discharges following touch stimuli applied to the head or trunk and demonstrated sustained discharges to visual stimuli. Resting discharge patterns of primary afferents were categorized into irregular, burster, regular, and silent classes. Afferent discharges were often modulated by low frequency (< 1 Hz) water movement around the head generated during respiratory movements. When fish with recording electrodes implanted in the lateral line nerve were visually stimulated, modulated peak discharges and average (DC) firing rates were inhibited in irregular-type units only. Inhibition of irregular-type afferent neurons also followed visual presentation of natural prey and persisted long after prey stimuli were removed from view. The inhibitory action upon lateralis afferents when activated by biologically significant visual stimuli leads to the hypothesis that the octavolateralis efferent system functions in the peripheral processing of information carried by the lateral line in natural settings.Abbreviations DC average - IO infraorbital - IPSPs inhibitory postynaptic potentials - MXC maxillary canal - OMC operculomandibular canal - SOC supraorbital canal  相似文献   

9.
Mormryid electric fish (Gnathonemus petersii) respond to novel stimuli with an increase in the rate of the electric organ discharge (EOD). These novelty responses were used to measure the fish's ability to detect small changes in the amplitude and latency of an electrosensory stimulus. Responses were evoked in curarized fish in which the EOD was blocked but in which the EOD motor command continued to be emitted. An artificial EOD was provided to the fish at latencies of 2.4 to 14.4 ms following the EOD motor command.Novelty responses were evoked in response to transient changes in artificial EOD amplitude as small as 1% of baseline amplitude, and in latency as small as 0.1 ms. Changes in latency were effective only at baseline delays of less than 12.4 ms.The sensitivity to small changes in latency supports the hypothesis that latency is used as a code for stimulus intensity in the active electrolocation system of mormyrid fish. The results also indicate that a corollary discharge signal associated with the EOD motor command is used to measure latency.Abbreviations EOD electric organ discharge - ELL electrosensory lateral line lobe - epsp excitatory post synaptic potential  相似文献   

10.
Summary Brain regions participating in the control ofEigenmannia's electric organ discharge frequency were localized by electrical microstimulation and anatomically identified by means of horseradish peroxidase deposition. A diencephalic region was found which, when stimulated, caused electric organ discharge (EOD) frequency increases of similar magnitude and time course as the frequency increases seen during the jamming avoidance response. Single unit recordings from this region revealed one cell type which preferentially responded to stimuli that cause the acceleration phase of the jamming avoidance response (electric organ discharge frequency increase). A second cell type responded preferentially to stimuli which cause EOD frequency decrease, and both cell types were tuned to stimuli which evoked maximal jamming avoidance behaviors.The results of the horseradish peroxidase experiments showed that the recording and stimulation sites correspond to the previously described nucleus electrosensorius. Our results confirm the earlier finding that this nucleus receives output from the torus semicircularis and we also found that the N. electrosensorius projects to the mesencephalic prepacemaker nucleus. The prepacemaker projects to the medullary pacemaker nucleus which generates the commands that evoke electric organ discharges.The anatomical and physiological results described here establish this diencephalic region as a link between the major sensory processing region for the jamming avoidance response, the torus semicircularis, and a mesencephalic pre-motor region, the prepacemaker nucleus.Abbreviations AM amplitude modulation - DF Delta F - ELLL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response - NE nucleus electrosensorius - PPN prepacemaker nucleus - PN pacemaker nucleus  相似文献   

11.
The pacemaker nucleus of Gymnotus carapo contains two types of neurons: pacemaker cells which set up the frequency of the electric organ discharge (EOD) and relay cells which convey the command signal to the spinal cord. Direct activation of a single relay cell provides enough excitation to discharge a pool of spinal electromotor neurons and electrocytes, generating a small EOD (unit EOD). Different relay cells generate unit EODs of variable size and waveform, indicating the involvement of different groups of electrocytes. A special technique of EOD recording (multiple air-gap) was combined with intracellular stimulation of relay cells to study the spatial distribution within the electric organ (EO) of the command signal arising from different relay cells. Three types of relay cells could be identified: type I commanding the rostral 10% of the EO, type II which distribute their command all along the EO and type III driving the caudal 30%. Waveform analysis of unit EODs indicates that doubly innervated electrocytes which are the most relevant for attaining the specific EOD waveform, receive a favored command from the pacemaker nucleus.Abbreviations CV conduction velocity - EMF electromotive force - EMN electromotor neuron - EO electric organ - EOD electric organ discharge - PN pacemaker nucleus - uEOD unit electric organ discharge  相似文献   

12.
Mormyrid fish use active electrolocation to detect and analyze objects. The electrosensory lateral line lobe in the brain receives input from electroreceptors and an efference copy of the command to discharge the electric organ. In curarized fish, we recorded extracellularly from neurons of the electrosensory lateral line lobe while stimulating in the periphery with either a local point stimulus or with a more natural whole-body stimulus. Two classes of neurons were found: (1) three types of E-cells, which were excited by a point stimulus; and (2) two types of I-cells, which were inhibited by point stimulus and responded with excitation to the electric organ corollary discharge. While all neurons responded to a point stimulus, only one out of two types of I-units and two of the three types of E-units changed their firing behavior to a whole-body stimulus or when an object was present. In most units, the responses to whole-body stimuli and to point stimuli differed substantially. Many electrosensory lateral line lobe units showed neural plasticity after prolonged sensory stimulation. However, plastic effects during whole body stimulation were often unlike those occurring during point stimuli, suggesting that under natural conditions electrosensory lateral line lobe network effects play an important role in shaping neural plasticity.  相似文献   

13.
Summary The duration of the electric organ discharge (EOD) in Gymnotus carapo is brief and independent of fish size. Spinal mechanisms involved in electrocyte synchronization were explored by recording spontaneous action potentials of single fibers from the electromotor bulbospinal tract (EBST). Using the field potential of the medullary electromotor nucleus (MEN) as a temporal reference we calculated the orthodromic conduction velocity (CV) of these fibers (range: 10.7–91 m/s).The CVs (in m/s) of fibers recorded at the same level of the spinal cord were significantly different in small and large fish; this difference disappeared when CV were expressed as percentage of body length/ms. Plotting these values against conduction distance (also in %) showed that low CV fibers predominate in the rostral cord while only fast fibers are found at distal levels. Moreover, antidromic stimulation of the distal cord was only effective on high CV fibers. The orthodromic CVs in the distal portion of the recorded fibers were calculated by collision experiments; no significant differences were found between proximal and distal portions.The spatial distribution of CV values within the EBST is proposed to play the main role in synchronizing the electromotoneurons' activity along the spinal cord.Abbreviations EOD electric organ discharge - EO electric organ - EBST electromotor bulbospinal tract - MEN medullary electromotor nucleus - CV conduction velocity - EMN electromotoneuron  相似文献   

14.
Recordings within the posterior eminentia granularis of the weakly electric fish, Apteronotus leptorhynchus, revealed multiple types of proprioceptive units responsive to changes in the position of the animal's trunk and tail. Intracellular labelling showed that the proprioceptor recordings were made from axons that ramify extensively within the EGp. The location of the somata giving rise to these axons is presently unknown. Electroreceptor afferent responses to electric organ discharge amplitude modulations caused by movement of the animal's tail were compared to responses caused by electronically generated AMs of similar amplitude and time course. These did not differ. Electrosensory lateral line lobe pyramidal cells responded significantly less to electric organ discharge amplitude modulations caused by changing the animal's posture as compared to electronically produced AMs, suggesting that central mechanisms attenuate pyramidal cell responses to reafferent electrosensory inputs. Experiments in which the pattern of reafferent input associated with changes in posture was altered revealed that the pyramidal cells learn, over a time course of several minutes, to reject new patterns of input. Both proprioceptive input and descending electrosensory input to the posterior eminentia granularis are involved in generating the observed plastic changes in pyramidal cell responsiveness.Abbreviations AM amplitude modulation - EGp posterior eminentia granularis - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - LTD long-term depression - LTP long-term potentiation  相似文献   

15.
1. The anterior segments of Nereis are oriented reflexly by passive unilateral tension of the posterior musculature. 2. The afferent impulses of the homostrophic reflex rise from any part of the worm and are conducted forward by way of the ventral nerve cord. 3. The efferent impulses flow out from the brain and anterior two or three ventral ganglia. 4. The homostrophic reflex may be partially or wholly masked by stereotropism.  相似文献   

16.
Summary The mandibular common inhibitor neurones ofHomarus gammarus receive sensory input from a wide receptive field (Table 1, Figs. 2, 3) and from their symmetrical homologue (Ferrero and Wales, 1976).The CI system receives excitatory input from mandibular proprioceptors, with the notable exception of the mandibular muscle receptor organ, and its activity increases, during mandible opening and closing, towards the extremes of movement (Fig. 1). The output of CI neurones is usually coupled except during some high frequency bursts. Unilateral sensory input usually produces a coupled output. Electrical stimulation of a wide range of mandibular nerves (Table 2) has a similar effect and entrains the CI output at lower frequencies (Figs. 4, 5).Antidromic stimulation of a CI neurone causes excitation of its homologue but to a lower level of activity and without enhanced coupling. Even when the excitatory state is raised, by concurrent stimulation of a sensory nerve, the pathway activated by antidromic stimuli does not produce coupled activity at frequencies above 20 Hz (Fig. 8).Stimulation with single pulses will frequently produce short trains of impulses from the CI neurones (Figs. 6, 7) suggesting reciprocal excitation between the neurones.A model of the system based on current knowledge is presented.  相似文献   

17.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

18.
Summary Intracellular recordings were obtained from the hair cells and afferent neurones of the angular acceleration receptor system of the statocyst of the squid,Alloteuthis subulata. Electrical stimulation of the efferent fibres in the crista nerve (minor) evoked responses in all of the secondary hair cells recorded from (n=211). 48% of the secondary air cells responded with a small depolarization, 15% with a hyperpolarization, and 37% with a depolarization followed by a hyperpolarization. The depolarizations and hyperpolarizations had mean stimulus to response delays of 6.7 ms and 24 ms, and reversal potentials of about –1 mV and –64 mV, respectively. Both types of potential increased in amplitude, up to a point, when the stimulus shock was increased and facilitation and/or summation effects could be obtained by applying multiple shocks. These data, together with the fact that both responses could be blocked by bath application of cobalt or cadmium, indicate that the secondary hair cells receive both inhibitory and excitatory efferent inputs and that these are probably mediated via chemical synapses. No efferent responses were seen in the primary hair cells but both depolarizing and hyperpolarizing efferent responses were obtained from the afferent neurones.  相似文献   

19.
Summary Previous electrophysiological data indicate that the afferent electrosensory impulses conveyed towards the mesencephalon are blocked in the rhombencephalic electrosensory lateral line nucleus (nELL) by the concomitantly occurring EOD (electric organ discharge) command-associated (corollary) discharge. Electron-microscopic observations and anterograde labeling with horseradish peroxidase show that the primary electrosensory fibers terminate with club endings on the adendritic soma of the nELL cells and form gap junctions with the postsynaptic membrane. The remaining part of the soma and the initial segment membrane of nELL cells are covered with a large number of boutons showing chemical synaptic profiles. The GABA-ergic (gamma-aminobutyric-acid) nature of the majority of the boutons is revealed immunocytochemically by anti-GABA and anti-glutamic acid decarboxylase (anti-GAD) antisera, as seen in the light microscope. Electron-microscopic examination confirms the GABAergic nature of most of the bouton-like terminals, whereas club endings show negative immunoreactivity. In addition, serotonin-immunoreactive fibers and boutons are found in the same nucleus, between and next to the nELL cells. It is suggested that the GABAergic endings are the morphological basis for the inhibition that occurs in the nELL and that is mediated by the corollary discharge.  相似文献   

20.
The functional role of the basal forebrain and preoptic regions in modulating the normally regular electric organ discharge was determined by focal brain stimulation in the weakly electric fish, Eigenmannia. The rostral preoptic area, which is connected with the diencephalic prepacemaker nucleus, was examined physiologically by electrical stimulation in a curarized fish. Electrical stimulation of the most rostral region of the preoptic area with trains of relatively low intensity current elicits discrete bursts of electric organ discharge interruptions in contrast to other forebrain loci. These responses were observed primarily as after-responses following the termination of the stimulus train and were relatively immune to variations in the stimulus parameters. As the duration and rate of these preoptic-evoked bursts of electric organ discharge interruptions (approximately 100 ms at 2 per s) are similar to duration and rate of natural interruptions, it is proposed that these bursts might be precursors to natural interruptions. These data suggest that the preoptic area, consistent with its role in controlling reproductive behaviors in vertebrates, may be influencing the occurrence of electric organ discharge courtship signals by either direct actions on the prepacemaker nucleus or through other regions that are connected with the diencephalic prepacemaker nucleus. Accepted: 16 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号