共查询到20条相似文献,搜索用时 0 毫秒
1.
The pathway of glucose metabolism in Pseudomonas aeruginosa was regulated by the availability of glucose and related compounds. On changing from an ammonium limitation to a glucose limitation, the organism responded by adjusting its metabolism substantially from the extracellular direct oxidative pathway to the intracellular phosphorylative route. This change was achieved by repression of the transport systems for gluconate and 2-oxogluconate and of the associated enzymes for 2-oxogluconate metabolism and gluconate kinase, while increasing the levels of glucose transport, hexokinase and glucose 6-phosphate dehydrogenase. The role of gluconate, produced by the action of glucose dehydrogenase, as a major inhibitory factor for glucose transport, and the possible significance of these regulatory mechanisms to the organism in its natural environment, are discussed. 相似文献
2.
3.
The metabolism of 2-oxogluconate by Pseudomonas aeruginosa 总被引:10,自引:0,他引:10
4.
5.
Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa 总被引:2,自引:11,他引:2
下载免费PDF全文

Glucose transport by Pseudomonas aeruginosa was studied. These studies were enhanced by the use of a mutant, strain PAO 57, which was unable to grow on glucose but which formed the inducible glucose transport system when grown in media containing glucose or other inducers such as 2-deoxy-d-glucose. Both PAO 57 and parental strain PAO transported glucose with an apparent K(m) of 7 muM. Free glucose was concentrated intracellularly by P. aeruginosa PAO 57 over 200-fold above the external level. These data constitute direct evidence that glucose is transported via active transport by P. aeruginosa. Various experimental data clearly indicated that P. aeruginosa PAO transported methyl alpha-d-glucose (alpha-MeGlc) via the glucose transport system. The apparent K(m) of alpha-MeGlc transport was 7 mM which indicated a 1,000-fold lower affinity of the glucose transport system for alpha-MeGlc than for glucose. While only unchanged alpha-MeGlc was detected intracellularly in P. aeruginosa, alpha-MeGlc was actually concentrated intracellularly less than 2-fold over the external level. Membrane vesicles of P. aeruginosa PAO retained transport activity for gluconate. This solute was concentrated intravesicularly several-fold over the external level. A component of the glucose transport system is believed to have been lost during vesicle preparation since glucose per se was not transported. Instead; glucose was converted to gluconate by membrane-associated glucose dehydrogenase and gluconate was then transported into the vesicles. Although this may constitute an alternate system for glucose transport, it is not a necessary prerequisite for glucose transport by intact cells since P. aeruginosa PAO 57, which lacks glucose dehydrogenase, was able to transport glucose at a rate equal to the parental strain. 相似文献
6.
7.
Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO. 总被引:3,自引:12,他引:3
下载免费PDF全文

Mutations causing deficiencies in the inducible, membrane-associated sn-glycerol-3-phosphate dehydrogenase (glpD) and in inducible glucose transport (glcT) were mapped on the Pseudomonas aeruginosa PAO1 chromosome by using the generalized transducing phages F116L and G101. These mutations, in separate catabolic regulatory units, were cotransducible with a previously described cluster of carbohydrate catabolic gene loci (zwf-1 eda-9001 edd-1) that maps at ca. 50 to 53 min on the chromosome. Mutant strain PFB362 (glcT1) did not transport glucose and did not produce a functional, periplasmic, glucose-binding protein that is required for glucose transport. This mutation was cotransducible with zwf-1 (70%), nalA (29%), and phe-2 (19%) but not with glpD1 or leu-10. The glpD1 mutation in strain PRP408 was cotransducible with zwf-1 (5%), eda-9001 (4%), and edd-1 (1%) and also with ami-151 (17%) and phe-2 (33%). These results expand the number of known carbohydrate catabolism genes that are clustered in the 50- to 55-min region of the PAO1 chromosome and allow us to propose the following relative gene order: ami-151 glpD1 phe-2 nalA zwf-1 eda-9001 edd-1 glcT1 leu-10. Three independently obtained nal determinants for high-level resistance to nalidixic acid, which were employed in these studies, exhibited similar cotransduction frequencies with several flanking marker mutations. 相似文献
8.
Pseudomonas aeruginosa is an obligate respirer which can utilize nitrate as a terminal electron acceptor under anaerobic conditions (denitrification). Immediate, transient regulation of nitrate respiration is mediated by oxygen through the inhibition of nitrate uptake. In order to gain an understanding of the bioenergetics of nitrate transport and its regulation by oxygen, the effects of various metabolic inhibitors on the uptake process and on oxygen regulation were investigated. Nitrate uptake was stimulated by the protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol, indicating that nitrate uptake is not strictly energized by, but may be affected by the proton motive force. Oxygen regulation of nitrate uptake might in part be through redox-sensitive thiol groups since N-ethylmaleimide at high concentrations decreased the rate of nitrate transport. Cells grown with tungstate (deficient in nitrate reductase activity) and azide-treated cells transported nitrate at significantly lower rates than untreated cells, indicating that physiological rates of nitrate transport are dependent on nitrate reduction. Furthermore, tungstate grown cells transported nitrate only in the presence of nitrite, lending support to the nitrate/nitrite antiport model for transport. Oxygen regulation of nitrate transport was relieved (10% that of typical anaerobic rates) by the cytochrome oxygen reductase inhibitors carbon monoxide and cyanide. 相似文献
9.
Pyrimidine catabolism in Pseudomonas aeruginosa 总被引:1,自引:0,他引:1
Pyrimidine catabolism in Pseudomonas aeruginosa was investigated. It was found that the pyrimidine bases uracil and thymidine as well as their respective reductive catabolic products could be utilized as sole sources of nitrogen. Reductive degradation of the pyrimidine bases was noted. The reductive catabolic pathway enzymes dihydropyrimidine dehydrogenase, dihydropyrimidinase and N-carbamoyl-beta-alanine amidohydrolase were all detected in minimal medium grown cells. Induction of pyrimidine catabolism by uracil was observed in this pseudomonad. Pyrimidine degradation in P. aeruginosa was not subject to catabolite repression. 相似文献
10.
Corinne Vander Wauven Alfred Jann Dieter Haas Thomas Leisinger Victor Stalon 《Archives of microbiology》1988,150(4):400-404
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT
ornithine 5-aminotransferase
- SOAT
N2-succinylornithine 5-aminotransferase
- Oru
ornithine utilization
- Aru
arginine utilization 相似文献
11.
12.
A high-affinity (Km = 2.7 x 10(-7) M) energy-requiring methionine-transport system has been characterized in RM 46 and RM 48, two different PAO methionine auxotrophs of Pseudomonas aeruginosa. After 8 s of transport 40--60% of the methionine label in the alcohol extract appears in S-adenosyl-L-methionine (SAM) with the remaining activity in free methionine. Methionine transport required a high degree of structural specificity for transport. Stimulation of transport occurred by addition of glucose or organic acids. The ability of a given substrate to stimulate transport was related to the type of carbon source used for growth. Transport was sensitive to sulfhydryl reagents and required oxidative phosphorylation, as indicated by the inhibitory effects of anaerobiosis, cyanide, and arsenate. The degree of inhibition by arsenate correlated with the level of ATP in the cell. Rapid transport in a SAM-deficient mutant (TM 1) and inhibition by arsenate of transport in this mutant suggested that SAM formation was not directly linked to transport and that ATP supplied energy for transport. Inhibition by arsenate was more severe in glucose- compared to citrate-stimulated cells. This result was also observed with proline transport indicating that this was not a peculiarity of the methionine-transport system. These data emphasize the close link between glucose metabolism, ATP levels, and transport. This ATP level is not so critical for transport in cells metabolizing citrate. 相似文献
13.
14.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions. 相似文献
15.
16.
17.
Mutants of Pseudomonas aeruginosa deficient in the utilization of l-proline as the only carbon and nitrogen source have been found to be defective either in proline dehydrogenase activity or in both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities of the bifunctional proline degradative enzyme. The latter type of mutants was unable to utilize l-ornithine, indicating that a single 1-pyrroline-5-carboxylate dehydrogenase activity is involved in the degradation of ornithine and proline. Proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities were strongly and coordinately induced by proline. It was excluded that 1-pyrroline-5-carboxylate acted as an inducer of the bifunctional enzyme and it was shown that the low level induction observed during growth on ornithine was due to the intracellular formation of proline. The formation of the proline degradative enzyme was shown to be subject to catabolite repression by citrate and nitrogen control.Abbreviations EMS
Ethylmethane sulfonate
- NG
N-methyl-N-nitro-N-nitrosoguanidine
- P
Minimal medium P
- Pro-DH
Proline dehydro-genase
- P5C
1-Pyrroline-5-carboxylate
- P5C-DH
1-Pyrroline-5-carboxylate dehydrogenase 相似文献
18.
Three cell-associated elastase precursors with approximate molecular weights of 60,000 (P), 56,000 (Pro I), and 36,000 (Pro II) were identified in Pseudomonas aeruginosa cells by pulse-labeling with [35S]methionine and immunoprecipitation. In the absence of inhibitors, cells of a wild-type strain as well as those of the secretion-defective mutant PAKS 18 accumulated Pro II as the only elastase-related radioactive protein. EDTA but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] inhibited the formation of Pro II, and this inhibition was accompanied by the accumulation of Pro I. P accumulated in cells labeled in the presence of ethanol (with or without EDTA), dinitrophenol plus EDTA, or carbonyl cyanide m-chlorophenyl hydrazone plus EDTA. Pro I and Pro II were localized to the periplasm, and as evident from pulse-chase experiments, Pro I was converted to the mature extracellular enzyme with Pro II as an intermediate of the reaction. P was located to the membrane fraction. Pro I but not Pro II was immunoprecipitated by antibodies specific to a protein of about 20,000 molecular weight (P20), which, as we showed before (Kessler and Safrin, J. Bacteriol. 170:1215-1219, 1988), forms a complex with an inactive periplasmic elastase precursor of about 36,000 molecular weight. Our results suggest that the elastase is made by the cells as a preproenzyme (P), containing a signal sequence of about 4,000 molecular weight and a "pro" sequence of about 20,000 molecular weight. Processing and export of the preproenzyme involve the formation of two periplasmic proenzyme species: proelastase I (56 kilodaltons [kDa]) and proelastase II (36 kDa). The former is short-lived, whereas proelastase II accumulates temporarily in the periplasm, most likely as a complex with the 20-kDa propeptide released from proelastase I upon conversion to proelastase II. The final step in elastase secretion seems to required both the proteolytic removal of a small peptide from proelastase II and dissociation of the latter from P20. 相似文献
19.
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction. 相似文献
20.