首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
藻胆蛋白(phycobiliprotein)是蓝藻和红藻藻胆体的组成部分,是光合作用集光复合体的组成部分,一般由α和β亚基构成,每个亚基含1~4个辅基色素,从而使藻胆蛋白具有特定的光谱吸收性质。根据这些吸收光谱性质,可以将藻胆蛋白分为:别藻蓝蛋白(APC)、藻蓝蛋白(PC)和藻红蛋白(PE)等,在某些缺乏PE而有异形胞的蓝藻中存在充当PE天线捕光功能的藻红蓝蛋白(PEC)〔1〕。藻胆蛋白可用于天然食用色素、化妆品色素和制药行业,还可作为免疫检测、荧光显微技术和流式细胞荧光测定法技术方面的荧光探针。特别是本工作研究的层理鞭枝藻(简称M.laminosu…  相似文献   

2.
藻胆蛋白功能的研究   总被引:4,自引:0,他引:4  
王广策  曾呈奎 《生命科学》1998,10(6):312-315
藻胆蛋白在藻类细胞中的主要功能是作为光合作用捕光色素系统。在蓝藻和红藻中,不同的藻胆蛋白形成高度有序的超分子复合体──藻胆体作为捕获光能的功能单位。另外,藻胆蛋白在细胞内还可以作贮存蛋白,以使细胞在缺氮的环境中能生存。由于藻胆蛋白与植物光敏素在形态、结构、组成以及光谱特征等方面均十分相似,而且在体外,可以诱导藻胆蛋白具有类似于植物光敏素的光化学特征。因此,我们推测藻胆蛋白与光敏素之间在功能上可能存在着某种关系,它们可能起源于同一祖先蛋白,在长期的进化中,两者的功能发生改变,但在一定的条件下,藻脂蛋白可能会行使类似于植物光敏素的功能。  相似文献   

3.
藻胆蛋白   总被引:7,自引:0,他引:7  
本文扼要介绍了藻胆蛋白的种类、组成和性质,讨论了藻胆蛋白及其超分子聚集体-藻胆体的结构与功能的关系,并就藻胆蛋白的分子生物学近况和合成调控进行了综述,最后提出了藻胆体组分的分子进化模式。  相似文献   

4.
通过遮黑培养缺失frxC基因的蓝藻Synechocystis sp.PCC 6803突变工程株,获得了叶绿素缺失的藻细胞,吸收光谱测定及数学计算表明,藻细胞中叶绿素缺失后藻胆蛋白含量增加,藻蓝蛋白和别藻蓝蛋白含量分别为相同条件下野生株对照组的4倍和6倍。野生株遮黑培养时,细胞进行异养生长, 藻胆蛋白含量下降,藻蓝蛋白和别藻蓝蛋白含量分别为光照培养条件下自养生长的野生株细胞的34.5%和25.3%。另外,缺失apcE基因的突变工程株细胞的藻胆蛋白含量也少于对照野生株,表明apcE基础因的编码蛋白Lcm与藻胆蛋白的含量相关。  相似文献   

5.
蔷薇藻Rhodella reticulata是属于红藻门的一种海洋单细胞微藻,其生长过程中产生藻胆蛋白、胞外多糖等生物活性物质。蔷薇藻经过破碎,通过硫酸铵沉淀和DEAE Sepharose FF柱层析后,可以分离出较纯的藻蓝蛋白。本文从pH、温度、光照、食品添加剂、金属离子等方面对蔷薇藻藻蓝蛋白稳定性作了较全面的研究:藻蓝蛋白在pH为7时最稳定;低温有利于保持藻蓝蛋白的活性;相对于光照,在避光条件下,藻蓝蛋白有较高的稳定性;适当浓度的蔗糖和葡萄糖都有利于藻蓝蛋白的保存;金属离子影响藻蓝蛋白的稳定性。  相似文献   

6.
藻胆蛋白研究   总被引:18,自引:0,他引:18  
藻胆蛋白是大量出现于红藻 (Rhodophy ta)、蓝绿藻 (Cyanophyta)和隐藻 (Cryptophyta)中的捕光色素蛋白 ,主要包括藻红蛋白、藻蓝蛋白和别藻蓝蛋白三种。藻胆蛋白把捕获的光能高效地传递给叶绿素 ,从而使海藻的光合作用得以发生[1] 。细菌、藻类和高等植物的光合作用的共同特征是具有很多“天线分子” ,这些“天线分子”吸收光能并通过非放射性过程将激发能传递到含有叶绿素的“反应中心” ,在红藻、蓝绿藻和隐藻中 ,藻胆蛋白就充当这种“天线分子”的角色。因此 ,最初的藻胆蛋白研究主要集中在探讨其光合作…  相似文献   

7.
研究了层理鞭枝藻藻胆体在不同浓度磷酸缓冲溶液中解离过程中荧光发射光谱的变化和光能传递。完整藻胆体的77K荧光光谱中只有一个峰,位于685nm它是末端发射体(核心-膜连接多肽和别藻蓝蛋白-B)的荧光峰。部分解离藻胆体的荧光光谱的主峰位移至652nm:次峰位于685nm;660nm为一弱荧光发射肩。它们依次为C-藻蓝蛋白,末端发射体和别藻蓝蛋白的荧光。严重解离藻胆体的荧光主峰移644nm;次峰由685nm移至682nm;660nm荧光发射肩消失。这表明C-藻蓝蛋白所捕获的光能已不能传递给别藻蓝蛋白,但可传递给末端发射体洞时又表明C-藻蓝蛋白不仅与别藻蓝蛋白相连接而且还与末端发射体相连接。提出该藻胆体光能传递链如下:核心-膜连接多肽藻红蓝蛋白→C-藻蓝蛋白→别藻蓝蛋白别藻蓝蛋白-B  相似文献   

8.
通过遮黑培养缺失frxC基因的蓝藻Synechocystissp.PCC6803突变工程株,获得了叶绿素缺失的藻细胞,吸收光谱测定及数学计算表明,藻细胞中叶绿素缺失后藻胆蛋白含量增加,藻蓝蛋白和别藻蓝蛋白含量分别为相同条件下野生株对照组的4倍和6倍。野生株遮黑培养时,细胞进行异养生长,藻胆蛋白含量下降,藻蓝蛋白和别藻蓝蛋白含量分别为光照培养条件下自养生长的野生株细胞的34.5%和253%。另外,缺失apcE基因的突变工程株细胞的藻胆蛋白含量也少于对照野生株,表明apcE基因的编码蛋白LCM与藻胆蛋白的含量相关。  相似文献   

9.
硫酸铵三步盐析对藻胆蛋白纯化的影响   总被引:6,自引:0,他引:6  
主要研究了多次硫酸铵盐析对条斑紫菜藻胆蛋白提取纯化效果。对分离提取的对条斑紫菜藻胆蛋白溶液进行了3次硫酸氨溶液盐析,实验结果表明:55%饱和度可以将绝大部分藻胆蛋白盐析;采用不同组合(15%、20%、25%、30%、35%、40%、45%7个饱和度分别与50%、55%、60%3个饱和度两两组合)二步硫酸铵盐析沉淀藻胆蛋白,使R-藻红蛋白和C-藻蓝蛋白的盐析后纯度(A564/A280)分别达到了1.0和0.45以上,得率分别为1.4%和0.95%;第3次硫酸铵盐析使R-藻红蛋白、C-藻蓝蛋白的纯度分别达到了1.4和0.4以上,最终产率分别为1.3%和0.8%,而变藻蓝蛋白产率有所下降(从0.65%到0.49%),但纯度变化不大。实验证明了采用多次盐析方法可以很大程度提高藻胆蛋白纯度。  相似文献   

10.
对螺旋藻(Spirulinaplatensis)藻胆体在室温和77K处于不同浓度磷缓冲溶液和不同解离时间的荧光发射光谱进行了研究。藻胆体在0.9mol/L磷酸缓冲溶液中,由于没有发生解离,光能传递效率高,在77K荧光发射光谱中只有一个峰,位于687nm,属于别藻蓝蛋白-B。当藻胆体悬浮在0.3mol/L磷酸缓冲溶液中1分钟,77K荧光光谱的主峰出现在684nm.又出现655nm和666nm荧光峰,它们依次属子C-藻蓝蛋白和别藻蓝蛋白。在2小时;655nm荧先峰成为主峰,684nm荧光峰为次峰,666nm荧光肩消失。这表明C-藻蓝蛋白所捕获的先能已不能传递给别藻蓝蛋白,但能传给别藻蓝蛋白-B。我们提出在螺旋藻藻胆体中存在两类C-藻蓝蛋白,一是与别藻蓝蛋白相连接,另一是与别藻蓝蛋白-B相连接。  相似文献   

11.
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.  相似文献   

12.
Molecular dynamics (MD) simulations were carried out to study the conformational rearrangement induced by deprotonation of the fluorescent chromophore in GFP, as well as the associated changes in the hydrogen-bonding network. For both the structures with either a neutral or an anionic chromophore, it was found that the beta-barrel was stable and rigid, and the conformation of the chromophore was consistent with the available x-ray structure. The conformational change in Thr203 due to deprotonation was also found to be consistent with the three-state isomerization model. Although GFP is highly fluorescent, denatured-GFP is nonfluorescent, indicating that the environment of the protein plays an important role in its fluorescence behavior. Our MD simulations, which explore the effect of the protein shell on the conformation of the chromophore, find the flexibility of the central chromophore to be significantly restricted due to the rigid nature of the protein shell. The hydrogen-bonding between the chromophore and neighboring residues was also shown to contribute to the chromophore rigidity. In addition to the MD studies, quantum mechanics/molecular mechanics (QM/MM) ONIOM calculations were carried out to investigate the effect of the beta-barrel on the internal rotation in the chromophore. Along with providing quantitative values for torsional rotation barriers about the bridging bond in the chromophore, the ONIOM calculations also validate our MD force field parameters.  相似文献   

13.
Reef-building corals contain host pigments, termed pocilloporins, that function to regulate the light environment of their resident microalgae by acting as a photoprotectant in excessive sunlight. We have determined the crystal structure of an intensely blue, nonfluorescent pocilloporin to 2.2 A resolution and a genetically engineered fluorescent variant to 2.4 A resolution. The pocilloporin chromophore structure adopts a markedly different conformation in comparison with the DsRed chromophore, despite the chromophore sequences (Gln-Tyr-Gly) being identical; the tyrosine ring of the pocilloporin chromophore is noncoplanar and in the trans configuration. Furthermore, the fluorescent variant adopted a noncoplanar chromophore conformation. The data presented here demonstrates that the conformation of the chromophore is highly dependent on its immediate environment.  相似文献   

14.
L F Povirk  I H Goldberg 《Biochemistry》1980,19(21):4773-4780
The methanol-extracted, nonprotein chromophore of neocarzinostatin (NCS), which has DNA-degrading activity comparable to that of the native antibiotic, was found to have a strong affinity for DNA. Binding of chromophore was shown by (1) quenching by DNA of the 440-nm fluorescence and shifting of the emission peak to 420 nm, (2) protection by DNA against spontaneous loss of activity in aqueous solution, and (3) inhibition by DNA of the spontaneous generation of 490-nm fluorescence. Good quantitative correlation was found between these three methods in measuring chromophore binding. There was nearly a 1:1 correspondence between loss of chromophore activity and generation of 490-nm fluorescence, suggesting spontaneous degradation of active chromophore to a highly fluorescent product. Chromophore showed a preference for DNA high in adenine + thymine content in both fluorescence quenching and protection studies. NCS apoprotein, which is known to bind and protect active chromophore, quenched the 440-nm fluorescence, shifted the emission peak to 420 nm, and inhibited the generation of 490-nm fluorescence. Chromophore had a higher affinity for apoprotein than for DNA. Pretreatment of chromophore with 2-mercaptoethanol increased the 440-nm fluorescence seven-fold and eliminated the tendency to generate 490-nm fluorescence. The 440-nm fluorescence of this inactive material was also quenched by DNA and shifted to 420 nm, indicating an affinity for DNA comparable to that of untreated chromophore. However, its affinity for apoprotein was much lower than that of untreated chromophore. Both 2-mercapto-ethanol-treated and untreated chromophore unwound supercoiled pMB9 DNA, suggesting intercalation by both molecules. Since no physical evidence for interaction of native neocarzinostatin with DNA has been found, it is likely that dissociation of the chromophore from the protein and association with DNA are important steps in degradation of DNA by neocarzinostatin.  相似文献   

15.
The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor proteins studied to date the covalent linkage of the chromophore to the apoprotein is dispensable for light-induced catalytic activation. We analyzed the functional importance of the covalent linkage using an isosteric chromophore-protein variant in which the cysteine is replaced by a glycine residue and the chromophore by thiomethyl-p-coumaric acid (TMpCA). The model compound TMpCA is shown to weakly complex with the C69G protein. This non-covalent binding results in considerable tuning of both the pKa and the color of the chromophore. The photoactivity of this system, however, was strongly impaired, making PYP the first known photosensor protein in which the covalent linkage of the chromophore is of paramount importance for the functional activity of the protein in vitro. We also studied the influence of chromophore analogs on the color and photocycle of PYP, not only in WT, but especially in the E46Q mutant, to test if effects from both chromophore and protein modifications are additive. When the E46Q protein binds the sinapinic acid chromophore, the color of the protein is effectively changed from yellow to orange. The altered charge distribution in this protein also results in a changed pKa value for chromophore protonation, and a strongly impaired photocycle. Both findings extend our knowledge of the photochemistry of PYP for signal generation.  相似文献   

16.
The dynamics of the PYP photocycle have been studied using time-resolved optical rotatory dispersion (TRORD) spectroscopy in the visible and far-UV spectral regions to probe the changes in the chromophore configuration and the protein secondary structure, respectively. The changes in the secondary structure in PYP upon photoisomerization of the chromophore can be described by two exponential lifetimes of 2 +/- 0.8 and 650 +/- 100 ms that correspond to unfolding and refolding processes, respectively. The TRORD experiments that follow the dynamics of the chromophore report three exponential components, with lifetimes of 10 +/- 3 micros, 1.5 +/- 0.5 ms, and 515 +/- 110 ms. A comparison of the kinetic behaviors of the chromophore and protein shows that during the decay of pR(465) an initial relaxation that is localized to the chromophore hydrophobic pocket precedes the formation of the chromophore and protein structures found in pB(355). In contrast, the protein and chromophore processes occur with similar time constants during inactivation of the signaling state.  相似文献   

17.
B Wang  M S Jorns 《Biochemistry》1989,28(3):1148-1152
DNA photolyase from Escherichia coli contains both flavin and pterin. However, the isolated enzyme is depleted with respect to the pterin chromophore (0.5 mol of pterin/mol of flavin). The extinction coefficient of the pterin chromophore at 360 nm is underestimated by a method used in earlier studies which assumes stoichiometric amounts of pterin and flavin. The extinction coefficient of the pterin chromophore, determined on the basis of its (p-aminobenzoyl)polyglutamate content (epsilon 360 = 25.7 x 10(3) M-1 cm-1), is in good agreement with that expected for a 5,10-methenyltetrahydrofolate derivative. Also consistent with this structure, the pterin chromophore could be reversibly hydrolyzed to yield a 10-formyltetrahydrofolate derivative or reduced to yield a 5-methyltetrahydrofolate derivative. The isolated enzyme could be reconstituted with various folate derivatives to yield enzyme that contained equimolar amounts of pterin and flavin. Similar results were obtained in reconstitution studies with the natural pterin chromophore, with 5,10-methenyltetrahydrofolate, and with 10-formyltetrahydrofolate. The results show that the polyglutamate moiety, previously identified in the natural chromophore, is not critical for binding. Reconstitution with the natural pterin chromophore did not affect catalytic activity. The latter is consistent with our previous studies which show that, although the pterin chromophore acts as a sensitizer in native enzyme, it is not essential for dimer repair which can occur at the same rate under saturating light with flavin (1,5-dihydro-FAD) as the only chromophore.  相似文献   

18.
Factors influencing the calculation of the relative amount of chromophore and the chromophore area by the two-wavelength method are examined. The study was carried out with the help of models and further tested on Feulgen stained preparations. Except for certain restrictions the difference between the chromophore area as calculated from the two transmissions measurements and the chromophore area obtained by planimetry can be used as a guide for determining the proper measuring conditions, including the choise of the two wavelengths.  相似文献   

19.
Summary Factors influencing the calculation of the relative amount of chromophore and the chromophore area by the two-wavelength method are examined. The study was carried out with the help of models and further tested on Feulgen stained preparations. Except for certain restrictions the difference between the chromophore area as calculated from the two transmissions measurements and the chromophore area obtained by planimetry can be used as a guide for determining the proper measuring conditions, including the choise of the two wavelengths.  相似文献   

20.
The configuration of the retinylidene chromophore in pharaonis phoborhodopsin (ppR) and its changes during the photoreaction cycle were investigated by means of a chromophore extraction method followed by HPLC analysis. The ppR has an all-trans chromophore, and unlike bacteriorhodopsin, it exhibits no dark isomerization of the chromophore. Irradiation of a ppR sample in the presence of 10 mM hydroxylamine, at which concentration a negligible amount of ppR was bleached, caused the formation of 90% 13-cis- and 10% all-trans-retinal oximes. Because the ppR sample under the continuous irradiation was a mixture containing original ppR, ppRM, and a small amount of ppRO, the above results showed that the chromophores of ppRM and ppRO are in a 13-cis form and an all-trans form, respectively. Therefore, the all-trans chromophore of ppR is isomerized to the 13-cis form on photon absorption, and it is thermally reisomerized to the all-trans form on the conversion process from ppRM to ppRO. The extracted retinal oximes from ppR and ppRO were mainly the 15-syn form, while that from ppRM was mainly the 15-anti form. This fact indicated that the attack of hydroxylamine on the chromophore is stereoselective owing to the unique structure of the chromophore binding site near the Schiff base region of the chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号