首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acute experiments on cats with closed chest by ultrasonic method the authors studied the blood flow in low-lobar pulmonary artery and the vein, the blood pressure in pulmonary artery, lung vessels resistance in experimental pulmonary edema caused by intravenous infusion of mixture fatty acids at artificial ventilation of increased frequencies or volumes, at was shown, that artificial ventilation of increased frequencies in pulmonary edema reduces the pressure increase in pulmonary artery, lung vessels resistance and increases the blood flow in pulmonary artery and vein. Artificial ventilation of increased volumes produces more intense pressure increase in pulmonary artery and lung vessels resistance than in initial ventilation but the blood flow was slightly changed. The authors assume that artificial ventilation of increased frequencies or volumes in pulmonary edema due to pulmonary circulation change reduces the pulmonary edema intensity at the beginning.  相似文献   

2.
By means of ultrasonic method used in acute experiments on cats with open chest under artificial lung ventilation the authors studied the blood flow in low-lobar pulmonary artery and the vein, the blood pressure in pulmonary artery as well as the balance between output of right and left ventricles in experimental pulmonary edemas caused by intravenous infusion of mixture fatty acids. It was shown, that acute injury of lungs vessels produces redistribution of blood flow to the lesser circulation, increases the pressure in pulmonary artery. The pattern of pulsating blood flow in lobar artery and vein changes. The authors assume that in situation, when lung vessels permeability is already deranged redistribution of the blood to the lesser circulation aggravates the degree of edema.  相似文献   

3.
Recently, a complete set of data on the branching pattern of the cat's pulmonary arterial and venous trees and the elasticity of these blood vessels was obtained in our laboratory. Hence it becomes possible for the first time to perform a theoretical analysis of the blood flow in the lung of an animal based on a set of actual data on anatomy and elasticity. This paper presents an analysis of steady flow of blood in cat's lung. The effect of the vessel elasticity is embodied in the "fifth-power law" and the "sheet-flow" theory. The theory yields the pressure-flow relationship of the whole lung, the longitudinal pressure distribution, and the transit time of blood in the capillaries. These results are compared with available experimental data in the literature.  相似文献   

4.
We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by computing blood flow through a model of large arteries extending from the thoracic aorta to the profunda arteries. The computed flow was compared against measured flow in the infrarenal (IR) aorta at rest and during exercise. Phase contrast-magnetic resonance imaging (PC-MRI) data was collected from 11 healthy volunteers at rest and during steady exercise. For each subject, an allometrically-scaled geometry of the large vessels was created. This geometry extends from the thoracic aorta to the femoral arteries and includes the celiac, superior mesenteric, renal, inferior mesenteric, internal iliac and profunda arteries. During rest, flow was simulated using measured supraceliac (SC) flow at the inlet and a uniform set of impedance boundary conditions at the 11 outlets. To simulate exercise, boundary conditions were modified. Inflow data collected during steady exercise was specified at the inlet and the outlet boundaries were adjusted as follows. The geometry of the structured trees used to compute impedance was scaled to simulate the effective change in the cross-sectional area of resistance vessels and capillaries due to exercise. The resulting computed flow through the IR aorta was compared to measured flow. This method produces good results with a mean difference between paired data to be 1.1 +/- 7 cm(3) s(- 1) at rest and 4.0 +/- 15 cm(3) s(- 1) at exercise. While future work will improve on these results, this method provides groundwork with which to predict the flow distributions in a network due to physiologic regulation.  相似文献   

5.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

6.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Studies of the origin of pulmonary blood flow heterogeneity have highlighted the significant role of vessel branching structure on flow distribution. To enable more detailed investigation of structure-function relationships in the pulmonary circulation, an anatomically based finite element model of the arterial and venous networks has been developed to more accurately reflect the geometry found in vivo. Geometric models of the arterial and venous tree structures are created using a combination of multidetector row X-ray computed tomography imaging to define around 2,500 vessels from each tree, a volume-filling branching algorithm to generate the remaining accompanying conducting vessels, and an empirically based algorithm to generate the supernumerary vessel geometry. The explicit generation of supernumerary vessels is a unique feature of the computational model. Analysis of branching properties and geometric parameters demonstrates close correlation between the model geometry and anatomical measures of human pulmonary blood vessels. A total of 12 Strahler orders for the arterial system and 10 Strahler orders for the venous system are generated, down to the equivalent level of the terminal bronchioles in the bronchial tree. A simple Poiseuille flow solution, assuming rigid vessels, is obtained within the arterial geometry of the left lung, demonstrating a large amount of heterogeneity in the flow distribution, especially with inclusion of supernumerary vessels. This model has been constructed to accurately represent available morphometric data derived from the complex asymmetric branching structure of the human pulmonary vasculature in a form that will be suitable for application in functional simulations.  相似文献   

8.
Since pulmonary blood flow to regions involved in adult respiratory disease syndrome (ARDS) is reduced by hypoxic vasoconstriction, compression by cuffs of edema, and local thromboses, we postulated that the bronchial circulation must enlarge to provide for the inflammatory response. We measured anastomotic bronchial systemic to pulmonary blood flow [QBr(s-p)] serially in a lung lobe in 31 open-chest dogs following a generalized lobar injury simulating ARDS. The pulmonary circulation of the weighed left lower lobe (LLL) was isolated and perfused (zone 2) with autologous blood in anesthetized dogs. QBr(s-p) was measured from the amount of blood which overflowed from this closed vascular circuit corrected by any changes in the lobe weight. The LLL was ventilated with 5% CO2 in air. The systemic blood pressure (volume infusion), gases, and acid-base status (right lung ventilation) were kept constant. We injured the LLL via the airway by instilling either 0.1 N HCl or a mixture of glucose and glucose oxidase or via the pulmonary vessels by injecting either alpha-naphthylthiourea or oleic acid into the LLL pulmonary artery. In both types of injury, there was a prompt rise in QBr(s-p) (mean rise = 247% compared with control), which was sustained for the 2 h of observation. The cause of this increase in flow was studied. Control instillation of normal saline into the airways or into the pulmonary vessels did not change QBr(s-p) nor did a similar increase in lobar fluid (weight) due to hydrostatic edema. Neither cardiac output nor systemic blood pressure increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.  相似文献   

10.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure–radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.  相似文献   

12.
The ultrasonic method was used in acute experiments on cats with open chest under artificial lung ventilation to obtain blood flow in low-lobar pulmonary artery and vein, the blood pressure in pulmonary artery, as well as the left atrial pressure in fat (olive oil) and mechanical (Lycopodium spores) pulmonary embolism. It is shown that pulmonary embolism produces the decrease in the blood flow in pulmonary artery and vein, the increase of the pressure in pulmonary artery and left atria, the increase of lung vessels resistance. The decrease is observed of systemic arterial pressure, bradycardia, and extrasystole. After 5-10 min the restoration of arterial pressure and heart rhythm occur and partial restoration of blood flow in pulmonary artery and vein. In many experiments the blood flow in vein outdoes that in the artery--it allows to suppose the increase of the blood flow in bronchial artery. After 60-90 min there occur sudden decrease of systemic arterial pressure, the decrease of the blood flow in pulmonary artery and vein. The pressure in pulmonary artery and resistance of pulmonary vessels remain high. Pulmonary edema developed in all animals. The death occurs in 60-100 min after the beginning of embolism.  相似文献   

13.
A novel macroscopic gas transport model, derived from fundamental engineering principles, is used to simulate the three-dimensional, unsteady respiration process within the alveolar region of the lungs. The simulations, mimicking the single-breath technique for measuring the lung diffusing capacity for carbon-monoxide (CO), allow the prediction of the red blood cell (RBC) distribution effects on the lung diffusing capacity. Results, obtained through numerical simulations, unveil a strong relationship between the type of distribution and the lung diffusing capacity. Several RBC distributions are considered, namely: normal (random), uniform, center-cluster, and corner-cluster red cell distributions. A nondimensional correlation is obtained in terms of a geometric parameter characterizing the RBC distribution, and presented as a useful tool for predicting the RBC distribution effect on the lung diffusing capacity. The effect of red cell movement is not considered in the present study because CO does not equilibrate with capillary blood within the time spent by blood in the capillary. Hence, blood flow effect on CO diffusion is expected to be only marginal.  相似文献   

14.
Under study were changes of intraorganic blood vessels of the heart and lungs in some experimental defects (open arterial defect, coarctation of the aorta, simultaneous existence of these two defects, stenosis of the pulmonary trunk, defect of the interatrial septum, triad of Fallot, syndrom of Lutembachet). Morphological data correlated with blood pressure in the pulmonary circulation and cardiac chambers. The complex of compensatory-adaptational mechanisms consisting of comparatively active and passive zones is formed in the heart and lungs. In most cases the changes develop in the vessels already existing. In hypertrophy of the myocardium when there is hypertension and hypervolemia in coronary vessels, sinusoids perform the function of blood reservoir, to a certain degree balancing the blood pressure, and luminar ducts relieve the muscle from excessive blood. The changes in the vascular system of the lung are directly dependent upon the pressure in the pulmonary circulation and the duration of observation. The closing arteries are the most active link in the chain of compensatory-adaptational mechanisms.  相似文献   

15.
We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by computing blood flow through a model of large arteries extending from the thoracic aorta to the profunda arteries. The computed flow was compared against measured flow in the infrarenal (IR) aorta at rest and during exercise. Phase contrast-magnetic resonance imaging (PC-MRI) data was collected from 11 healthy volunteers at rest and during steady exercise. For each subject, an allometrically-scaled geometry of the large vessels was created. This geometry extends from the thoracic aorta to the femoral arteries and includes the celiac, superior mesenteric, renal, inferior mesenteric, internal iliac and profunda arteries. During rest, flow was simulated using measured supraceliac (SC) flow at the inlet and a uniform set of impedance boundary conditions at the 11 outlets. To simulate exercise, boundary conditions were modified. Inflow data collected during steady exercise was specified at the inlet and the outlet boundaries were adjusted as follows. The geometry of the structured trees used to compute impedance was scaled to simulate the effective change in the cross-sectional area of resistance vessels and capillaries due to exercise. The resulting computed flow through the IR aorta was compared to measured flow. This method produces good results with a mean difference between paired data to be 1.1 ± 7 cm3 s? 1 at rest and 4.0 ± 15 cm3 s? 1 at exercise. While future work will improve on these results, this method provides groundwork with which to predict the flow distributions in a network due to physiologic regulation.  相似文献   

16.
To assess the effects of alveolar hypoxia and angiotensin II infusion on distribution of blood flow to the lung we performed perfusion lung scans on anesthetized mechanically ventilated lambs. Scans were obtained by injecting 1-2 mCi of technetium-labeled albumin macroaggregates as the lambs were ventilated with air, with 10-14% O2 in N2, or with air while receiving angiotensin II intravenously. We found that both alveolar hypoxia and infusion of angiotensin II increased pulmonary vascular resistance and redistributed blood flow from the mid and lower lung regions towards the upper posterior region of the lung. We assessed the effects of angiotensin II infusion on filtration pressure in six lambs by measuring the rate of lung lymph flow and the protein concentration of samples of lung lymph. We found that angiotensin II infusion increased pulmonary arterial pressure 50%, lung lymph flow 90%, and decreased the concentration of protein in lymph relative to plasma. These results are identical to those seen when filtration pressure increases during alveolar hypoxia. We conclude that alveolar hypoxia and angiotensin II infusion both increase fluid filtration in the lung by increasing filtration pressure. The increase in filtration pressure may be the result of a redistribution of blood flow in the lung with relative overperfusion of vessels in some areas and transmission of the elevated pulmonary arterial pressure to fluid-exchanging sites in those vessels.  相似文献   

17.
Increasing the total surface area of the pulmonary blood-gas interface by capillary recruitment is an important factor in maintaining adequate oxygenation when metabolic demands increase. Capillaries are known to be recruited during conditions that raise pulmonary blood flow and pressure. To determine whether pulmonary arterioles and venules are part of the recruitment process, we made in vivo microscopic observations of the subpleural microcirculation (all vessels less than 100 microns) in the upper lung where blood flow is low (zone 2). To evoke recruitment, pulmonary arterial pressure was elevated either by an intravascular fluid load or by airway hypoxia. Of 209 arteriolar segments compared during low and high pulmonary arterial pressures, none recruited or derecruited. Elevated arterial pressure, however, did increase the number of perfused capillary segments by 96% with hypoxia and 165% with fluid load. Recruitment was essentially absent in venules (4 cases of recruitment in 289 segments as pressure was raised). These data support the concept that recruitment in the pulmonary circulation is exclusively a capillary event.  相似文献   

18.
A computational model of the pulmonary microcirculation is developed and used to examine blood flow from arteriole to venule through a realistically complex alveolar capillary bed. Distributions of flow, hematocrit, and pressure are presented, showing the existence of preferential pathways through the system and of large segment-to-segment differences in all parameters, confirming and extending previous work. Red blood cell (RBC) and neutrophil transit are also analyzed, the latter drawing from previous studies of leukocyte aspiration into micropipettes. Transit time distributions are in good agreement with in vivo experiments, in particular showing that neutrophils are dramatically slowed relative to the flow of RBCs because of the need to contract and elongate to fit through narrower capillaries. Predicted neutrophil transit times depend on how the effective capillary diameter is defined. Transient blockage by a neutrophil can increase the local pressure drop across a segment by 100--300%, leading to temporal variations in flow and pressure as seen by videomicroscopy. All of these effects are modulated by changes in transpulmonary pressure and arteriolar pressure, although RBCs, neutrophils, and rigid microspheres all behave differently.  相似文献   

19.
Anatomic evidence suggests that leu5-enkephalin (Leu5-enk) may be involved in the physiologic control of pulmonary vascular tone. Information regarding its pulmonary vascular effect is limited; we therefore studied its effect on the immature pulmonary circulation. Normoxic and hypoxic unsedated newborn lambs with chronically implanted flow probes around the right and left pulmonary arteries were used. Leu5-enk was injected into one pulmonary artery only, so that any direct effect of the peptide on the pulmonary vessels could be determined by measuring changes in the ratio of blood flow to the injected versus the non-injected lung. Leu5-enk caused a small but significant increase in pulmonary artery pressure without increasing cardiac output or left atrial pressure (threshold = 1 microgram/kg); it is therefore a pulmonary vasoconstrictor. At a dose of 10 micrograms/kg, Leu5-enk also raised pulmonary artery pressure (20.6 mmHg to 23.9 mmHg; F(8,36) = 15.1 p less than 0.001) and calculated PAR (14.6 to 16.1 units; NS). However, the ratio of blood flow to the two lungs did not change; thus, Leu5-enk does not appear to directly act on pulmonary vessels, but rather through an intermediary to produce pulmonary vasoconstriction. This indirect pulmonary vasoconstriction was blocked by pretreatment with naloxone (3 mg/kg). We conclude that Leu5-enk is a pulmonary vasoconstrictor, albeit a weak one, in the lamb and may therefore play a role in pulmonary vascular homeostasis. This vasoconstriction does not seem to be due to a direct effect on pulmonary vessels by Leu5-enk, but may be effected through a neural or hormonal intermediary.  相似文献   

20.
With circulatory pathology, patient-specific simulation of hemodynamics is required to minimize invasiveness for diagnosis, treatment planning, and followup. We investigated the advantages of a smart combination of often already known hemodynamic principles. The CircAdapt model was designed to simulate beat-to-beat dynamics of the four-chamber heart with systemic and pulmonary circulation while incorporating a realistic relation between pressure-volume load and tissue mechanics and adaptation of tissues to mechanical load. Adaptation was modeled by rules, where a locally sensed signal results in a local action of the tissue. The applied rules were as follows: For blood vessel walls, 1) flow shear stress dilates the wall and 2) tensile stress thickens the wall; for myocardial tissue, 3) strain dilates the wall material, 4) larger maximum sarcomere length increases contractility, and 5) contractility increases wall mass. The circulation was composed of active and passive compliances and inertias. A realistic circulation developed by self-structuring through adaptation provided mean levels of systemic pressure and flow. Ability to simulate a wide variety of patient-specific circumstances was demonstrated by application of the same adaptation rules to the conditions of fetal circulation followed by a switch to the newborn circulation around birth. It was concluded that a few adaptation rules, directed to normalize mechanical load of the tissue, were sufficient to develop and maintain a realistic circulation automatically. Adaptation rules appear to be the key to reduce dramatically the number of input parameters for simulating circulation dynamics. The model may be used to simulate circulation pathology and to predict effects of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号