首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)‐anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C‐terminal hydrophobic residues. GPI‐anchored proteins are widespread cell sensors in mammals, especially during egg‐sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell‐cell communications in plants.  相似文献   

2.
3.
The fertilization process of plants is governed by different kinds of cell-cell interactions. In higher plants, these interactions are required both for recognition of the pollen grain by the female reproductive system and to direct the growth of the pollen tube inside the ovary. Despite many years of study, the signaling mechanisms that guide the pollen tube toward its target, the ovule, are largely unknown. Two distinct types of principles, mechanical and chemotropic, have been suggested to account for the directed growth of the pollen tube. The first of these two types of models implies that the guidance of the pollen tube depends on the architecture and chemical properties of the female reproductive tissues, whereas the latter suggests that the ovule provides a signal for the target-directed growth of the pollen tube. To examine such a role for the ovules, we analyzed the growth path of pollen tubes in mutants defective in ovule development in Arabidopsis. The results presented here provide unique in vivo evidence for an ovule-derived, long-range activity controlling pollen tube guidance. A morphological comparison of the ovule mutants used in this study indicates that within the ovule, the haploid embryo sac plays an important role in this long-range signaling process.  相似文献   

4.
Proline‐rich proteins (PRPs) are known to play important roles in sexual plant reproduction. Most of the known proteins in the family were found in styles or pollen and modulate pollen tube growth. Here, we identified a novel member of the gene family, NtProRP1, which is preferentially expressed in tobacco pollen grains, pollen tubes and zygotes. NtProRP1 could be secreted into the extracellular space including the cell wall, and the predicted N‐terminal signal peptide is crucial for its secretion. In NtProRP1‐RNAi plants, pollen germination and pollen tube growth were significantly slower and showed zigzag or swell morphology in vitro. Early embryogenesis also exhibited aberrant development, indicative of its critical role in both pollen tube growth and early embryogenesis. Further investigation revealed that NtProRP1 plays a crucial role in osmotic stress response during pollen tube growth and is likely regulated by Tsi, a stress‐responsive gene, suggesting that the regulatory mechanism is also involved in the stress response during sexual plant reproduction. These data provide evidence that NtProRP1 functions as a downstream factor of Tsi1 in the stress response and converges the stress signal into the modulation of pollen tube growth and early embryogenesis.  相似文献   

5.
Ling Y  Zhang C  Chen T  Hao H  Liu P  Bressan RA  Hasegawa PM  Jin JB  Lin J 《PloS one》2012,7(1):e29470
Female gametophyte is the multicellular haploid structure that can produce embryo and endosperm after fertilization, which has become an attractive model system for investigating molecular mechanisms in nuclei migration, cell specification, cell-to-cell communication and many other processes. Previous reports found that the small ubiquitin-like modifier (SUMO) E3 ligase, SIZ1, participated in many processes depending on particular target substrates and suppression of salicylic acid (SA) accumulation. Here, we report that SIZ1 mediates the reproductive process. SIZ1 showed enhanced expression in female organs, but was not detected in the anther or pollen. A defect in the siz1-2 maternal source resulted in reduced seed-set regardless of high SA concentration within the plant. Moreover, aniline blue staining and scanning electron microscopy revealed that funicular and micropylar pollen tube guidance was arrested in siz1-2 plants. Some of the embryo sacs of ovules in siz1-2 were also disrupted quickly after stage FG7. There was no significant affects of the siz1-2 mutation on expression of genes involved in female gametophyte development- or pollen tube guidance in ovaries. Together, our results suggest that SIZ1 sustains the stability and normal function of the mature female gametophyte which is necessary for pollen tube guidance.  相似文献   

6.
Evolution of pistil length as a choice mechanism for pollen quality   总被引:3,自引:0,他引:3  
During the fertilisation process in plants, pollen tube growth rate may be selected as a trait important in male to male competition. Since female morphology provides the necessary selective arena for such competition, we investigate if sexual selection theory can be used to explain the evolution of pistil length as a female choice mechanism. This choice is performed by direct interference with male to male competition. Furthermore, the sessile nature of plants limits the number of mates a female can choose between, which could limit the benefit a female can gain from distinguishing between donors. To mirror these circumstances, we model a situation when there are only two competitors at a time. Using a game theoretical approach we show that if pollen tube growth rate can be used as an indication of heritable quality, pistil length can be selected in response to variation of this trait. We further find that length of the pistil affects selection of pollen tube growth rate. Thus female preference and male competitive ability co-evolve, but this does not necessarily lead to a positive relationship between the two. Under certain circumstances we find a negative relation instead. Given realistic differences in male quality, the model indicates that there is a potential for evolution of female morphology as a choice mechanism for pollen quality.  相似文献   

7.
Transport of macromolecules through plasmodesmata and the phloem   总被引:2,自引:0,他引:2  
Cell-to-cell communication is a pivotal process in the determination of cell fate during development and physiological adaptation in response to environmental stimuli. The intercellular trafficking of proteins and RNAs has emerged as a novel mechanism of cell-to-cell signaling in plants. As a strategy for efficient intercellular communication, plants have evolved plant-specific symplasmic communication networks via plasmodesmata (PD) and the phloem. PD are symplasmic channels connecting the cytoplasm of neighboring cells and are responsible for the local exchange of metabolites and signaling molecules. The phloem is the sieve-tube system that allows rapid, long-distance translocation of molecules. Together, PD and phloem conduits have been shown to allow the transport of proteins and RNAs in non-selective or/and selective modes. This review describes the current understanding of macromolecule trafficking through PD and the phloem.  相似文献   

8.
Li HJ  Xue Y  Jia DJ  Wang T  Hi DQ  Liu J  Cui F  Xie Q  Ye D  Yang WC 《The Plant cell》2011,23(9):3288-3302
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.  相似文献   

9.
10.
During angiosperm reproduction, one of the two synergid cells within the female gametophyte undergoes cell death prior to fertilization. The pollen tube enters the female gametophyte by growing into the synergid cell that undergoes cell death and releases its two sperm cells within the degenerating synergid cytoplasm to effect double fertilization. In Arabidopsis (Arabidopsis thaliana) and many other species, synergid cell death is dependent upon pollination. However, the mechanism by which the pollen tube causes synergid cell death is not understood. As a first step toward understanding this mechanism, we defined the temporal relationship between pollen tube arrival at the female gametophyte and synergid cell death in Arabidopsis. Using confocal laser scanning microscopy, light microscopy, transmission electron microscopy, and real-time observation of these two events in vitro, we demonstrate that synergid cell death initiates after the pollen tube arrives at the female gametophyte but before pollen tube discharge. Our results support a model in which a signaling cascade triggered by pollen tube-synergid cell contact induces synergid cell death in Arabidopsis.  相似文献   

11.
In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.  相似文献   

12.
Plants have evolved many mechanisms to increase the chance of gene dispersal mainly through pollen and environmental factors play an important role. Understanding the mechanism behind gene dispersal is therefore crucial in the correct evaluation of the use of genetically modified crops for cultivation. In this paper we address the question of weather nutrient availability for the female affects the outcome of pollen competition between two pollen donor cultivars of Cucumis sativus. We do this by carrying out controlled crosses of female plants grown at three different nutrient levels. We separated the effect of a specific donor from the effect of pollen tube growth rate by using reversed crosses of fast and slow pollen. Our results show that female effects on siring ability vary with nutrient level. Pollen with a high pollen tube growth rate was more successful when nutrient availability for the female was high. This could be the result of selection on the female to adjust preference according to environmental circumstances. Pollen tube growth rate was measured under nutrient rich circumstances, thus high performers possessed traits adapted to a nutrient rich situation. Due to trade-off effects, these traits might not be advantageous in poor environments. Instead, individuals adapted to low nutrient circumstances will have a higher pollen tube growth rate. If siring ability varies with the environment of the recipient plant, this means that assessments of gene flow must account for this variation and include both pollen donors and recipient plants subjected to a range of environmental circumstances. In risk assessments of transgenic plants, plants are often kept under experimental, homogenous conditions. If our results also apply to other species, estimates of gene flow under constant conditions may be misleading. Selection on siring ability and female preference have fundamental effects on gene flow and need to be considered in risk assessments of transgenic plants.Co-ordinating editor: I. Olivieri  相似文献   

13.
Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein, interact to trigger a Ca(2+)-dependent signaling network, resulting in inhibition of pollen tube growth, cytoskeletal alterations, and programmed cell death (PCD) in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ~140 million years ago. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.  相似文献   

14.
15.
16.
17.
18.
alpha4-Fucosylation represents a final step of protein N- glycosylation. alpha4-fucosylated N-glycans are thought to be involved in cell-to-cell communication and recognition in primates and plants. Nevertheless, in the plant life cycle, the function of alpha4-fucosylation remains largely unknown. To gain an insight into the role of alpha4-fucosylation during development, the study focused on tobacco flowers. It is shown that an increase in alpha(1,4)fucosyltransferase (Fuc-T) activity is only observed during anther development, whereas it remains at a constant but low level (around 20 pmol Fuc h(-1) mg(-1) protein) in the gynoecium and perianth. At least a 4-fold higher activity is detected in mature pollen grains. These data suggest that alpha(1,4)Fuc-T activity is regulated during anther development. Furthermore, alpha(1,4)Fuc-T activity could be required during pollen tube elongation where the activity level peaks at 350 pmol h(-1) mg(-1) protein. Based on enzyme profile and cycloheximide effects on pollen germination and activity, it is hypothesized that the gene encoding alpha4-Fuc-T could be regulated late during pollen development. A potential role of alpha4- fucosylation during pollen tube elongation is also discussed.  相似文献   

19.
In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.  相似文献   

20.
Regulated demethylesterification of homogalacturonan, a major component of plant cell walls, by the activity of pectin methylesterases (PMEs), plays a critical role for cell wall stability and integrity. Especially fast growing plant cells such as pollen tubes secrete large amounts of PMEs toward their apoplasmic space. PME activity itself is tightly regulated by its inhibitor named as PME inhibitor and is thought to be required especially at the very pollen tube tip. We report here the identification and functional characterization of PMEI1 from maize (ZmPMEI1). We could show that the protein acts as an inhibitor of PME but not of invertases and found that its gene is strongly expressed in both gametophytes (pollen grain and embryo sac). Promoter reporter studies showed gene activity also during pollen tube growth toward and inside the transmitting tract. All embryo sac cells except the central cell displayed strong expression. Weaker signals were visible at sporophytic cells of the micropylar region. ZmPMEI1–EGFP fusion protein is transported within granules inside the tube and accumulates at the pollen tube tip as well as at sites where pollen tubes bend and/or change growth directions. The female gametophyte putatively influences pollen tube growth behavior by exposing it to ZmPMEI1. We therefore simulated this effect by applying recombinant protein at different concentrations on growing pollen tubes. ZmPMEI1 did not arrest growth, but destabilized the cell wall inducing burst. Compared with female gametophyte secreted defensin-like ZmES4, which induces burst at the very pollen tube tip, ZmPMEI1-induced burst occurs at the subapical region. These findings indicate that ZmPMEI1 secreted by the embryo sac likely destabilizes the pollen tube wall during perception and together with other proteins such as ZmES4 leads to burst and thus sperm release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号