首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic lupus erythematosus is a complement-mediated autoimmune disease. While genetic deficiencies of classical pathway components lead to an increased risk of developing systemic lupus erythematosus, end organ damage is associated with complement activation and immune complex deposition. The role of classical pathway regulators in systemic lupus erythematosus is unknown. C4 binding protein (C4bp) is a major negative regulator of the classical pathway. In order to study the role of C4bp deficiency in an established murine model of lupus nephritis, mice with a targeted deletion in the gene encoding C4bp were backcrossed into the MRL/lpr genetic background. Compared with control MRL/lpr mice, C4bp knockout MLR/lpr mice had similar mortality and similar degrees of lymphoproliferation. There were no differences in the extent of proteinuria or renal inflammation. Staining for complement proteins and immunoglobulins in the kidneys of diseased mice revealed no significant strain differences. Moreover, there was no difference in autoantibody production or in levels of circulating immune complexes. In comparison with C57BL/6 mice, MRL/lpr mice had depressed C4 levels as early as 3 weeks of age. The absence of C4bp did not impact serum C4 levels or alter classical pathway hemolytic activity. Given that immune complex renal injury in the MRL/lpr mouse is independent of Fc receptors as well as the major negative regulator of the classical pathway, new mechanisms for immune-complex-mediated renal injury need to be considered.  相似文献   

2.
Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of “conventional” complement deficiencies with these newly described developmental roles.  相似文献   

3.
Inherited complement deficiencies   总被引:4,自引:0,他引:4  
Isolated genetic deficiencies of individual components of the complementary system have been described in man for all the components of the classical pathway and the membrane attack complex as well as for Factor I, Factor H and properdin. It is only for Factor B and Factor D of the alternative pathway that homozygous deficiency states are not so far known. Complement deficiency states provide the most direct way of looking at the role of the complement system in vivo and emphasize the importance of complement in resistance to bacterial infection and in particular to infection with Neisseria. This association is not unexpected since in vitro studies have shown complement to be an efficient enhancer of phagocytosis and inflammation. The particularly frequent occurrence of neisserial infection may be ascribed to the ability of these organisms to survive in phagocytic cells so that the plasma cytolytic activity provided by complement is needed to kill them. On the other hand the strong association between complement deficiencies and immune-complex diseases--especially systemic lupus erythematosus--was unexpected and seems paradoxical in view of the large part played by complement in the pathogenesis of immune complex mediated tissue damage. The paradox can be explained in part by the necessity for an intact complement system in the solubilization and the proper handling of immune complexes. It is also likely that complement deficiency can allow the persistence of low virulence organisms that produce disease solely by an immune complex mechanism. Recently described deficiencies of complement receptors and their effects in vivo are described.  相似文献   

4.
The complement components of the major histocompatibility locus   总被引:4,自引:0,他引:4  
Polymorphism of complement components, recognized by differences in either their antigenic specificity or their electrophoretic mobility, together with studies of inherited deficiencies, has enabled many of their structural genes to be mapped. In humans, three genes (for C2, C4, and factor B) have been placed between HLA-D and HLA-B on chromosome 6 and in mice, C4 between H2-I and H2-D, chromosome 17. Structural studies show that these components have exceptional features. C2 and factor B which contain the proteolytic active site of the C3 and C5 convertases are of the classical and alternative pathway respectively and are similar in structure and function. Both are novel types of serine proteases. C4 (as C3) contains an intrachain thioester bond essential for hemolytic activity. Molecular genetic investigations are determining the relative positions of these genes, and their precise structure, and should clarify their relation to the inherited diseases which are associated with defects in this section of the human genome.  相似文献   

5.
The lectin pathway of complement is considered to be the most ancient complement pathway as inferred from identification of ancient homologs of mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs) in some invertebrates. MBL homologs with galactose selectivity and an MASP3-like sequence also occur in bony fish, linking the evolution of the lectin complement pathway from invertebrates to higher vertebrates. However, these cannot be considered authentic complement components until confirmatory functional evidence is obtained. Here, we report the isolation and characterization of two MBL homologs from a cyprinid teleost, the common carp, Cyprinus carpio. One, designated GalBL, corresponds to the MBL-like molecule with the galactose specificity. The other is an authentic MBL with mannose specificity. Both were found to associate with a serine protease that cleaves native human C4 into C4b but not C4i with a hydrolyzed thioester. Molecular cloning and phylogenetic analysis revealed this C4-activating protease to be carp MASP2, indicating that MASP2 arose before the emergence of bony fish. Database mining of MBL-like genes reveals that MBL and GalBL genes are arranged in tandem in the zebrafish genome and that both lectins are conserved in the distantly related puffer fish. These results imply that bony fish have developed a diverged set of MBL homologs that function in the lectin complement pathway.  相似文献   

6.
目的:MBL是补体激活凝集素途径的关键因素。MBL基因多态性影响MBL血清水平。结肠直肠癌患者血清MBL水平升高,低水平的MBL则预示着术后肺炎的发生,目前还不清楚此相关性是否与遗传相关。本实验分析调查了结肠直肠癌患者和健康对照者的MBL基因分型,评估基因分析和复发率、生存率之间潜在的相关性。方法:使用TaqMan基因分型分析法和实时定量PCR分析MBL基因的4个SNP、启动子区2个SNP、非编码区1个SNP;ELISA测定标本血清MBL含量。结果:所有标本中发现了8种不同的MBL单体型,它们在患者和健康者中出现频率几乎是完全一样的;YA/YA基因型与高水平的MBL相关,YO/YO与低水平的MBL水平相关,6种不同基因型CRC患者的MBL水平存在着明显不同。结论:MBL基因型与血清MBL浓度显著相关(P<0.0001);突变型B,C,D和启动子单体型Y,X对MBL含量的影响起主要作用;MBL基因型和术后感染并发症没有明显相关性(P=0.33),与复发癌和存活时间也没有明显相关性(P=0.74)。因此,从基因水平还不能解释为何结肠直肠癌患者血清MBL水平增加。对比已经检测出的血清MBL水平,其基因型还不能预测结肠直肠癌患者的疾病进程。  相似文献   

7.
Both ficolins and mannose-binding lectin (MBL) are lectins characterized by the presence of collagen-like and carbohydrate-binding domains in a subunit, although their carbohydrate-binding moieties are quite different. A fibrinogen-like domain is in ficolins, and a carbohydrate recognition domain is in MBL. On binding to pathogens, human MBL activates the complement system via the lectin pathway in association with two types of MBL-associated serine proteases (MASP), MASP-1 and MASP-2 and its truncated form, small MBL-associated protein (sMAP, also called MAp19). We report here that ficolin/P35, a human serum ficolin, was found to copurify with MASPs and sMAP. MASPs that were complexed with ficolin/P35 exhibited proteolytic activities against complement components C4, C2, and C3. The ficolin/P35-MASPs-sMAP complex that was bound to Salmonella typhimurium activated complement. These findings indicate that ficolin/P35 is a second collagenous lectin capable of activating the lectin pathway and thus plays a role in innate immunity.  相似文献   

8.
9.
Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease. Complete deficiency of complement component C4 confers strong genetic risk for SLE. Partial C4 deficiency states have also shown association with SLE, but despite much effort over the last 30 years, it has not been established whether this association is primarily causal or secondary to long-range linkage disequilibrium. The complement C4 locus, located in the major histocompatibility complex (MHC) class III region, exhibits copy-number variation (CNV) and C4 itself exists as two paralogs, C4A and C4B. In order to determine whether partial C4 deficiency is an independent genetic risk factor for SLE, we investigated C4 CNV in the context of HLA-DRB1 and MHC region SNP polymorphism in the largest and most comprehensive complement C4 study to date. Specifically, we genotyped 2,207 subjects of northern and southern European ancestry (1,028 SLE cases and 1,179 controls) for total C4, C4A, and C4B gene copy numbers, and the loss-of-function C4 exon 29 CT indel. We used multiple logistic regression to determine the independence of C4 CNV from known SNP and HLA-DRB1 associations. We clearly demonstrate that genetically determined partial C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations. These results are further corroborated by the lack of association shown by the C4A exon 29 CT insertion in either cohort. Thus, although complete homozygous deficiency of complement C4 is one of the strongest genetic risk factors for SLE, partial C4 deficiency states do not independently predispose to the disease.  相似文献   

10.
Mannose-binding lectin (MBL) is a calcium-dependent lectin shown to play an important role in innate immunity to infection by activating the classical complement pathway and phagocytosis. In vitro studies have shown that MBL is able to bind to the gp120 HIV-1 surface antigen, and variants of the gene are associated with increased risk of HIV infection among Scandinavians. We investigated the association of genetic MBL variants and HIV-1 infection in 278 Colombian HIV-infected and control individuals. MBL genotype frequencies were similar for both groups, and no association was detected between MBL alleles B, C, and D and susceptibility to HIV-1 infection ( P=1.0). Since there is a well-documented link between the tested MBL alleles and very low MBL serum concentration, these results do not support the hypothesis that MBL levels are a risk factor for HIV-1 infection in Colombia.  相似文献   

11.
The mannose-binding lectin (MBL), a circulating pattern recognition molecule, recognizes a wide range of infectious agents with resultant initiation of the complement cascade in an Ab-independent manner. MBL recognizes infectious non-self and altered self in the guise of apoptotic and necrotic cells. In this study, we demonstrate that mice lacking MBL, and hence are devoid of MBL-dependent lectin pathway activation but have fully active alternative and classical complement pathways, are protected from cardiac reperfusion injury with resultant preservation of cardiac function. Significantly, mice that lack a major component of the classical complement pathway initiation complex (C1q) but have an intact MBL complement pathway, are not protected from injury. These results suggest that the MBL-dependent pathway of complement activation is a key regulator of myocardial reperfusion ischemic injury. MBL is an example of a pattern recognition molecule that plays a dual role in modifying inflammatory responses to sterile and infectious injury.  相似文献   

12.
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.  相似文献   

13.
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.  相似文献   

14.
Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.  相似文献   

15.
The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.  相似文献   

16.
Ho-Chun Wei  Huidy Shu  James V Price 《Génome》2003,46(6):1049-1058
Assigning functional significance to completed genome sequences is one of the next challenges in biological science. Conventional genetic tools such as deficiency chromosomes help assign essential complementation groups to their corresponding genes. We describe an F2 genetic screen to identify lethal mutations within cytogenetic region 61D-61F of the third chromosome of Drosophila melanogaster. One hundred sixteen mutations were identified by their failure to complement both Df(3L)bab-PG and Df(3L)3C7. These alleles were assigned to 14 complementation groups and 9 deficiency intervals. Complementation groups were ordered using existing deficiencies, as well as new deficiencies generated in this study. With the aid of the genomic sequence, genetic and physical maps in the region were correlated by use of PCR to localize the breakpoints of deficiencies within a 268-kb genomic contig (GenBank accession No. AC005847). Six essential complementation groups were assigned to specific genes, including genes encoding a porphobilinogen deaminase and a Sac1-like protein.  相似文献   

17.
Schistosoma mansoni is a blood-dwelling trematode which can persist for several years in the vessels of the human host. The schistosomal surface has been extensively characterized by lectin binding studies, revealing the carbohydrate composition of the worm's tegument. Using fluorescent and scanning electron microscopy we demonstrate that the surface carbohydrates of cercariae and adult worms are the binding ligands for mannanbinding lectin (MBL), a serum protein that is part of the innate immune system. An in vitro complement activation assay with C1q-deficient complement suggests that MBL, in association with the serine proteases MASP-1 and MASP-2, is capable of fixing complement components on the schistosomal tegument and activating the complement cascade via the "MBL pathway." MBL is constitutively expressed by hepatocytes and present in the blood at a stable level. Since it is also a weak acute-phase protein and therefore upregulated in an acute-phase response we investigated the serum MBL levels in patients infected with Schistosoma sp. and in healthy control persons. An enzyme-linked immunosorbent assay indicated no differences between the two groups. Although our results suggest an involvement of MBL activated complement in vitro, its role in vivo remains to be clarified.  相似文献   

18.
Infection imposes a serious burden on patients with systemic lupus erythematosus (SLE). The increased infection rate in SLE patients has been attributed in part to defects of immune defence. Recently, the lectin pathway of complement activation has also been suggested to play a role in the occurrence of infections in SLE. In previous studies, SLE patients homozygous for mannose-binding lectin (MBL) variant alleles were at an increased risk of acquiring serious infections in comparison with patients who were heterozygous or homozygous for the normal allele. This association suggests a correlation between functional MBL level and occurrence of infections in SLE patients. We therefore investigated the biological activity of MBL and its relationship with the occurrence of infections in patients with SLE. Demographic and clinical data were collected in 103 patients with SLE. Functional MBL serum levels and MBL-induced C4 deposition were measured by enzyme-linked immunosorbent assay using mannan as coat and an MBL- or C4b-specific monoclonal antibody. The complete MBL-dependent pathway activity was determined by using an assay that measures the complete MBL pathway activity in serum, starting with binding of MBL to mannan, and was detected with a specific monoclonal antibody against C5b-9. Charts were systematically reviewed to obtain information on documented infections since diagnosis of SLE. Major infections were defined as infections requiring hospital admission and intravenous administration of antibiotics. In total, 115 infections since diagnosis of lupus, including 42 major infections, were documented in the 103 SLE patients (mean age 41 ± 13 years, mean disease duration 7 ± 4 years). The percentage of SLE patients with severe MBL deficiency was similar to that in 100 healthy controls: 13% versus 14%, respectively. Although deposition of C4 to mannan and MBL pathway activity were reduced in 21% and 43% of 103 SLE patients, respectively, neither functional MBL serum levels nor MBL pathway activity was associated with infections or major infections in regression analyses. In conclusion, SLE patients frequently suffer from infections, but deficiency of functional MBL does not confer additional risk.  相似文献   

19.
Infection imposes a serious burden on patients with systemic lupus erythematosus (SLE). The increased infection rate in SLE patients has been attributed in part to defects of immune defence. Recently, the lectin pathway of complement activation has also been suggested to play a role in the occurrence of infections in SLE. In previous studies, SLE patients homozygous for mannose-binding lectin (MBL) variant alleles were at an increased risk of acquiring serious infections in comparison with patients who were heterozygous or homozygous for the normal allele. This association suggests a correlation between functional MBL level and occurrence of infections in SLE patients. We therefore investigated the biological activity of MBL and its relationship with the occurrence of infections in patients with SLE. Demographic and clinical data were collected in 103 patients with SLE. Functional MBL serum levels and MBL-induced C4 deposition were measured by enzyme-linked immunosorbent assay using mannan as coat and an MBL- or C4b-specific monoclonal antibody. The complete MBL-dependent pathway activity was determined by using an assay that measures the complete MBL pathway activity in serum, starting with binding of MBL to mannan, and was detected with a specific monoclonal antibody against C5b-9. Charts were systematically reviewed to obtain information on documented infections since diagnosis of SLE. Major infections were defined as infections requiring hospital admission and intravenous administration of antibiotics. In total, 115 infections since diagnosis of lupus, including 42 major infections, were documented in the 103 SLE patients (mean age 41 +/- 13 years, mean disease duration 7 +/- 4 years). The percentage of SLE patients with severe MBL deficiency was similar to that in 100 healthy controls: 13% versus 14%, respectively. Although deposition of C4 to mannan and MBL pathway activity were reduced in 21% and 43% of 103 SLE patients, respectively, neither functional MBL serum levels nor MBL pathway activity was associated with infections or major infections in regression analyses. In conclusion, SLE patients frequently suffer from infections, but deficiency of functional MBL does not confer additional risk.  相似文献   

20.
Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controversy as to whether MBL can utilize C1r and C1s or, inversely, whether C1q can utilize MASP-1 and 2. Serum deficient in C1r produced no complement activation in IgG-coated microwells, whereas activation was seen in mannan-coated microwells. In serum, C1r and C1s were found to be associated only with C1q, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated with MBL, whereas in the presence of EDTA most of these components formed smaller complexes. Over 95% of the total MASPs and MAp19 found in serum are not complexed with MBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号