首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different nonsynonymous changes may be under different selective pressure during evolution. Of the 190 possible interchanges among the 20 amino acids, only 75 can be attained by a single-base substitution. An evolutionary index (EI) can be empirically computed for each of the 75 elementary changes as the likelihood of substitutions, relative to that of synonymous changes. We used 280, 1,306, 2,488, and 309 orthologous genes from primates (human versus Old World monkey), rodents (mouse versus rat), yeast (S. cerevisiae versus S. paradoxus), and Drosophila (D. melanogaster versus D. simulans), respectively, to estimate the EIs. In each data set, EI varies more than 10-fold, and the correlation coefficients of EIs from the pairwise comparisons are high (e.g., r = 0.91 between rodent and yeast). The high correlations suggest that the amino acid properties are strong determinants of protein evolution, irrespective of the identities of the proteins or the taxa of interest. However, these properties are not well captured in conventional measures of amino acid exchangeability. We, therefore, propose a universal index of exchange (U): for any large data set, its EI can be expressed as U*R, where R is the average Ka/Ks for that data set. The codon-based, empirically determined EI (i.e., U*R) makes much better predictions on protein evolution than do previous methods.  相似文献   

2.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   

3.
    
A point mutation (I53A) in the core of Escherichia coli RNase H* is known to destabilize both the native conformation (DeltaG(UN)) and the kinetic intermediate (DeltaG(UI)) by 2 kcal/mole. Here, we have used native-state hydrogen deuterium exchange to ask how this destabilization is propagated throughout the molecule. Stability parameters were obtained for individual residues in I53A and compared with those from the wild-type protein. A destabilization of 2 kcal/mole was observed in residues in the core but was not detected in the periphery of the molecule. These results are consistent with the localized destabilization of the core observed in the early intermediate of the kinetic folding pathway, supporting the resemblance of this kinetic intermediate to the partially unfolded form detected in the native state at equilibrium. A thermodynamic cycle also shows no interaction between Ile 53 and a residue in the periphery. There is, however, an increase in the number of denaturant-independent exchange events in the periphery of I53A, showing that effects of the point mutation are communicated to regions outside the core, although perhaps not through changes in stability. In sum, this work shows that localized regions within a protein can be destabilized independently. Furthermore, it implies a correspondence between the kinetic intermediate and the equilibrium PUF, as the magnitude and localization of the destabilization are the same in both.  相似文献   

4.
5.
K Ogasahara  S Sawada  K Yutani 《Proteins》1989,5(3):211-217
CD spectra in the aromatic region of a series of the mutant alpha-subunits of tryptophan synthase from Escherichia coli, substituted at position 49 buried in the interior of the molecule, were measured at pH 7.0 and 25 degrees C. These measurements were taken to gain information on conformational change produced by single amino acid substitutions. The CD spectra of the mutant proteins, substituted by Tyr or Trp residue in place of Glu residue at position 49, showed more intense positive bands due to one additional Tyr or Trp residue at position 49. The CD spectra of other mutant proteins also differed from that of the wild-type protein, despite the fact that the substituted residues at position 49 were not aromatic. Using the spectrum of the wild-type protein (Glu49) as a standard, the spectra of the other mutants were classified into three major groups. For 10 mutant proteins substituted by Ile, Ala, Leu, Met, Val, Cys, Pro, Ser, His, or Gly, their CD values of bands (due to Tyr residues) decreased in comparison with those of the wild-type protein. The mutant protein substituted by Phe also belonged to this group. These substituted amino acid residues are more hydrophobic than the original residue, Glu. In the second group, three mutant proteins were substituted by Lys, Gln, or Asn, and the CD values of tyrosyl bands increased compared to those of the wild-type proteins. These residues are polar. In the third group, the CD values of tyrosyl bands of two mutant proteins substituted by Asp or Thr were similar to those of the wild-type protein, except for one band at 276.5 nm. These results suggested that the changes in the CD spectra for the mutant proteins were affected by the hydrophobicity of the residues at position 49.  相似文献   

6.
    
The small 62‐residue IgG‐binding domain B1 of protein L from Peptostreptococcus magnus (Ppl‐B1) has proven to be a simple system for the study of the thermodynamics and kinetics of protein folding. X‐ray diffraction studies have been initiated in order to determine how the thermostability, folding and unfolding rates of a series of point mutations spanning Ppl‐B1 correlate with the high‐resolution structures. To this end, a tryptophan‐containing variant of Ppl‐B1 (herein known as wild type) and two mutants, Lys61Ala and Val49Ala, have been crystallized. Full data sets have been collected for the wild type and the Lys61Ala and Val49Ala mutants to resolutions of 1.7, 2.3 and 1.8 Å, respectively. Interestingly, all three crystallize using different precipitants and in different space groups. This may be a consequence of the relatively large effects of single‐site mutations on surface‐charge distribution or structural conformation, which might affect crystal contact sites.  相似文献   

7.
Homologous sequences are correlated due to their common ancestry. Probabilistic models of sequence evolution are employed routinely to properly account for these phylogenetic correlations. These increasingly realistic models provide a basis for studying evolution and for exploiting it to better understand protein structure and function. Notable recent advances have been made in the treatment of insertion and deletion events, the estimation of amino-acid replacement rates, and the detection of positive selection.  相似文献   

8.
A statistical approach was applied to select those models that best fit each individual mitochondrial (mt) protein at different taxonomic levels of metazoans. The existing mitochondrial replacement matrices, MtREV and MtMam, were found to be the best-fit models for the mt-proteins of vertebrates, with the exception of Nd6, at different taxonomic levels. Remarkably, existing mitochondrial matrices generally failed to best-fit invertebrate mt-proteins. In an attempt to better model the evolution of invertebrate mt-proteins, a new replacement matrix, named MtArt, was constructed based on arthropod mt-proteomes. The new model was found to best fit almost all analyzed invertebrate mt-protein data sets. The observed pattern of model fit across the different data sets indicates that no single replacement matrix is able to describe the general evolutionary properties of mt-proteins but rather that taxonomical biases and/or the existence of different mt-genetic codes have great influence on which model is selected.  相似文献   

9.
Many phylogenetic inference methods are based on Markov models of sequence evolution. These are usually expressed in terms of a matrix (Q) of instantaneous rates of change but some models of amino acid replacement, most notably the PAM model of Dayhoff and colleagues, were originally published only in terms of time-dependent probability matrices (P(t)). Previously published methods for deriving Q have used eigen-decomposition of an approximation to P(t). We show that the commonly used value of t is too large to ensure convergence of the estimates of elements of Q. We describe two simpler alternative methods for deriving Q from information such as that published by Dayhoff and colleagues. Neither of these methods requires approximation or eigen-decomposition. We identify the methods used to derive various different versions of the Dayhoff model in current software, perform a comparison of existing and new implementations, and, to facilitate agreement among scientists using supposedly identical models, recommend that one of the new methods be used as a standard.  相似文献   

10.
Using an information theoretic formalism, we optimize classes of amino acid substitution to be maximally indicative of local protein structure. Our statistically-derived classes are loosely identifiable with the heuristic constructions found in previously published work. However, while these other methods provide a more rigid idealization of physicochemically constrained residue substitution, our classes provide substantially more structural information with many fewer parameters. Moreover, these substitution classes are consistent with the paradigmatic view of the sequence-to-structure relationship in globular proteins which holds that the three-dimensional architecture is predominantly determined by the arrangement of hydrophobic and polar side chains with weak constraints on the actual amino acid identities. More specific constraints are imposed on the placement of prolines, glycines, and the charged residues. These substitution classes have been used in highly accurate predictions of residue solvent accessibility. They could also be used in the identification of homologous proteins, the construction and refinement of multiple sequence alignments, and as a means of condensing and codifying the information in multiple sequence alignments for secondary structure prediction and tertiary fold recognition. © 1996 Wiley-Liss, Inc.  相似文献   

11.
In vitroevolution is used to study protein sequences, structures, and interactions and to obtain proteins with new properties. To analyze the specific features of this process in phage display experiments, we studied the amino acid composition of selected sequences, constructed a matrix of amino acid substitutions, and identified pairs of coadaptive substitutions. The amino acid frequency proved to be tightly associated with the number of corresponding codons; numerous correlated substitutions were found.  相似文献   

12.
Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescales. However, any long time period is simply the accumulation of many short time periods, and it remains unclear why evolution should appear to act systematically differently across the range of timescales studied. We show that the observed time-dependent behavior can be explained qualitatively by modeling protein sequence evolution as an aggregated Markov process (AMP): a time-homogeneous Markovian substitution model observed only at the level of the amino acids encoded by the protein-coding DNA sequence. The study of AMPs sheds new light on the relationship between amino acid-level and codon-level models of sequence evolution, and our results suggest that protein evolution should be modeled at the codon level rather than using amino acid substitution models.  相似文献   

13.
    
Escherichia coli is used extensively in the production of proteins within biotechnology for a number of therapeutic applications. Here, we discuss the production and overexpression of the potential biopharmaceutical human thioredoxin protein (rhTRX) within E. coli. Overexpression of foreign molecules within the cell can put an enormous amount of stress on the translation machinery. This can lead to a misfiring in the construction of a protein resulting in populations differing slightly in amino acid composition. Whilst this may still result in a population of active molecules being expressed, it does present significant problems with molecules that are destined for clinical applications. Amino acid misincorporation of this subset could potentially result in antibodies being raised to these unnatural proteins. Cross-reaction with a patient's endogenous thioredoxin could then lead to an autoimmune phenomena and serious health implications. Generally, the issue of misincorporation appears not to be a routine regulatory concern (see ICH Q6B guidelines). Therefore, amino acid misincorporation may not have been detected, much less explored in the clinic as the occurrence or absence of these random errors is not routinely reported. Using current technologies based on proteomics, the ability to find misincorporation critically depends upon the criteria for matching theoretical and experimental mass spectrometry data. Additionally, isolation and extraction of these mistranslated proteins from the production process is both difficult and expensive. Therefore, it is advantageous to find routes for removing their production during the upstream phase. In this study, we show how modern proteomic technology can be used to identify and quantify amino acid misincorporation. Using these techniques we have shown how manipulation of gene sequence and scoping of fermentation media composition can lead to the reduction and elimination of these misincorporations in rhTRX.  相似文献   

14.
    
Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and it will be helpful for designing stable mutants. In this work, we have analyzed the stability of protein mutants using three different data sets of 1791, 1396, and 2204 mutants, respectively, for thermal stability (DeltaTm), free energy change due to thermal (DeltaDeltaG), and denaturant denaturations (DeltaDeltaGH2O), obtained from the ProTherm database. We have classified the mutants into 380 possible substitutions and assigned the stability of each mutant using the information obtained with similar type of mutations. We observed that this assignment could distinguish the stabilizing and destabilizing mutants to an accuracy of 70-80% at different measures of stability. Further, we have classified the mutants based on secondary structure and solvent accessibility (ASA) and observed that the classification significantly improved the accuracy of prediction. The classification of mutants based on helix, strand, and coil distinguished the stabilizing/destabilizing mutants at an average accuracy of 82% and the correlation is 0.56; information about the location of residues at the interior, partially buried, and surface regions of a protein correctly identified the stabilizing/destabilizing residues at an average accuracy of 81% and the correlation is 0.59. The nine subclassifications based on three secondary structures and solvent accessibilities improved the accuracy of assigning stabilizing/destabilizing mutants to an accuracy of 84-89% for the three data sets. Further, the present method is able to predict the free energy change (DeltaDeltaG) upon mutations within a deviation of 0.64 kcal/mol. We suggest that this method could be used for predicting the stability of protein mutants.  相似文献   

15.
We derive an expectation maximization algorithm for maximum-likelihood training of substitution rate matrices from multiple sequence alignments. The algorithm can be used to train hidden substitution models, where the structural context of a residue is treated as a hidden variable that can evolve over time. We used the algorithm to train hidden substitution matrices on protein alignments in the Pfam database. Measuring the accuracy of multiple alignment algorithms with reference to BAliBASE (a database of structural reference alignments) our substitution matrices consistently outperform the PAM series, with the improvement steadily increasing as up to four hidden site classes are added. We discuss several applications of this algorithm in bioinformatics.  相似文献   

16.
以蛋白质分子的氨基酸置换数或核酸分子的核苷酸置换数为衡量尺度 ,说明生物大分子随时间的改变 (即分子进化速率 )保持相对恒定  相似文献   

17.
    
The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D ‐amino acids. Both the D ‐enantiomer of protonectin (D ‐prt) and D ‐Lys‐protonectin (D ‐Lys‐prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D ‐prt showed strong stability against trypsin, chymotrypsin and the human serum, while D ‐Lys‐prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D ‐Lys‐prt still kept typical α‐helical structure in the membrane mimicking environment, while D ‐prt showed left hand α‐helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D ‐amino acid substitution or partially D ‐amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D ‐prt and D ‐Lys‐prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The F1-ATP synthase complex constitutes the catalytic component of F1F0-ATP synthase, the primary ATP synthetic enzyme in the cell. Previous studies indicate that the glacier ice worm, Mesenchytraeus solifugus, maintains unusually high ATP levels that continue to rise as temperatures decline, suggesting that molecular changes within ice worm F1-ATP synthase subunits may contribute to this energetic anomaly. In this report, we compared ice worm F1-ATP synthase subunits (α, β, γ) with homologues across metazoan phyla (arthropod, chordate, nematode) and among a group of clitellate annelids (Enchytraeus albidus, Enchytraeus buchholzi, Lumbriculus variegatus, Theromyzon tessulatum). Amino acid alignments indicated that ice worm F1-ATP α and F1-ATP β subunits share strong sequence homology with their mesophilic counterparts, respectively, but that ATP γ has diverged more rapidly. Moreover, F1-ATP α and F1-ATP β displayed amino acid compositional changes consistent with trends observed in other cold adapted proteins, while F1-ATP γ diverged in unexpected directions (e.g., gains in size, charged residues). Several ice worm-specific amino acid substitutions map to positions near the F1-ATP β catalytic site while others occur near subunit contact sites.  相似文献   

19.
《Free radical research》2013,47(1):363-370
The rate of amino acid replacement in Cu, Zn SOD greatly departs from the expectations of the molecular clock. We examine 27 Cu, Zn SOD sequences available and conclude that: (I) the SOD enzymes from different mammal families differ from each other by roughly the same number of replacements, which is consistent with a simultaneous mammalian radiation; (2) over the most recent 60 million years (MY) the rate of SOD evolution is fairly high (15aa/100aa/100MYR) and may be considered constant; (3) the rate of accumulation of amino acid replacements since the divergence of fungi. plants and animals to the present is inconstant along different branches of the evolutionary tree; moreover it steadily decreases with time, to the same extent in all lineages; (4) some comparisons exhibit divergences that are in any case greater than expected from a Poisson process on the assumption of a molecular clock; (5) plant chloroplast enzymes display fewer differences from each other than cytoplasmic ones; (6) bacteriocuprein (from Photobacterium leiognathi), fluke and human extracellular SOD are all three extremely remotely related to one another and to the SOD of other eukaryotes.

The process of consistent decline of the rate of evolution of Cu. Zn SOD can be described by a number of mathematical functions. We explore simple models that assume constant rates and might be applicable to other proteins or genes that apparently evolve at disparate rates.  相似文献   

20.
Substitutions of amino acids for Gly 12 or Gly 13 in theras oncogene-encoded P21 proteins have been demonstrated to produce unique structural changes in these proteins that correlate with their ability to produce cell transformation. For example, the P21 proteins with Arg 12 or Val 13 are both known to be actively transforming. Recent site-specific mutagenesis experiments on the transforming Arg 12 protein have found that the substitution of Val for Gly 10 has no effect on transforming activity whereas the substitution of Val for Gly 13 led to a loss of transforming activity. In this study, we examine the structural effects of these substitutions on the amino terminal hydrophobic decapeptide (Leu 6-Gly 15) of P21 using conformational energy analysis. The results show that the transforming proteins with Gly 10 and Arg 12 or Val 10 and Arg 12 can both adopt the putative malignancy-causing conformation, whereas, for the nontransforming protein with Arg 12 and Val 13, this conformation is energetically disallowed. These results further support the theory that due to structural changes the transforming P21 proteins are unable to bind to some regulatory cellular element which may be the recently identified binding protein responsible for the induction of increased GTPase activity in normal P21 compared with transforming mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号