首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer''s disease (AD) drug-oriented chemical-protein interactome (CPI) using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE), and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER) and histone deacetylase (HDAC), which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover “behind-the-scenes” aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm.  相似文献   

2.
3.
Biomedical experimental work often focuses on altering the functions of selected proteins. These changes can hit signaling pathways, and can therefore unexpectedly and non-specifically affect cellular processes. We propose PathwayLinker, an online tool that can provide a first estimate of the possible signaling effects of such changes, e.g., drug or microRNA treatments. PathwayLinker minimizes the users' efforts by integrating protein-protein interaction and signaling pathway data from several sources with statistical significance tests and clear visualization. We demonstrate through three case studies that the developed tool can point out unexpected signaling bias in normal laboratory experiments and identify likely novel signaling proteins among the interactors of known drug targets. In our first case study we show that knockdown of the Caenorhabditis elegans gene cdc-25.1 (meant to avoid progeny) may globally affect the signaling system and unexpectedly bias experiments. In the second case study we evaluate the loss-of-function phenotypes of a less known C. elegans gene to predict its function. In the third case study we analyze GJA1, an anti-cancer drug target protein in human, and predict for this protein novel signaling pathway memberships, which may be sources of side effects. Compared to similar services, a major advantage of PathwayLinker is that it drastically reduces the necessary amount of manual literature searches and can be used without a computational background. PathwayLinker is available at http://PathwayLinker.org. Detailed documentation and source code are available at the website.  相似文献   

4.
Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60-70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the "Rule of Three" was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity.  相似文献   

5.
Elucidating signaling pathways is a fundamental step in understanding cellular processes and developing new therapeutic strategies. Here we introduce a method for the large-scale elucidation of signaling pathways involved in cellular response to drugs. Combining drug targets, drug response expression profiles, and the human physical interaction network, we infer 99 human drug response pathways and study their properties. Based on the newly inferred pathways, we develop a pathway-based drug-drug similarity measure and compare it to two common, gold standard drug-drug similarity measures. Remarkably, our measure provides better correspondence to these gold standards than similarity measures that are based on associations between drugs and known pathways, or on drug-specific gene expression profiles. It further improves the prediction of drug side effects and indications, elucidating specific response pathways that may be associated with these drug properties. Supplementary Material for this article is available at www.liebertonline.com/cmb.  相似文献   

6.
Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug''s ability to modulate one or more biological pathways. Understanding the biological processes behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs, 730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to undergo a manual literature review. We found 32 associations to be supported by the scientific literature.  相似文献   

7.
8.
9.
Pharmacoproteomics may be defined as proteomics applied to the discovery of new therapeutic targets and to the study of drug effects. Proteomics is a powerful technique for analyzing the protein expression profiles in a biological system and its modifications in response to a stimulus or according to the physiological or pathophysiological states. Thus it is a technique of choice for the discovery of new drug targets. It is also an interesting approach for the study of the mode of action of treatments and preclinical drug development. This pharmacoproteomic approach may be particularly useful for the research of new molecular alterations implicated in type 2 diabetes and/or obesity and for the further characterization of existing or new drugs.  相似文献   

10.
Mycobacterium tuberculosis is the focus of several investigations for design of newer drugs, as tuberculosis remains a major epidemic despite the availability of several drugs and a vaccine. Mycobacteria owe many of their unique qualities to mycolic acids, which are known to be important for their growth, survival, and pathogenicity. Mycolic acid biosynthesis has therefore been the focus of a number of biochemical and genetic studies. It also turns out to be the pathway inhibited by front-line anti-tubercular drugs such as isoniazid and ethionamide. Recent years have seen the emergence of systems-based methodologies that can be used to study microbial metabolism. Here, we seek to apply insights from flux balance analyses of the mycolic acid pathway (MAP) for the identification of anti-tubercular drug targets. We present a comprehensive model of mycolic acid synthesis in the pathogen M. tuberculosis involving 197 metabolites participating in 219 reactions catalysed by 28 proteins. Flux balance analysis (FBA) has been performed on the MAP model, which has provided insights into the metabolic capabilities of the pathway. In silico systematic gene deletions and inhibition of InhA by isoniazid, studied here, provide clues about proteins essential for the pathway and hence lead to a rational identification of possible drug targets. Feasibility studies using sequence analysis of the M. tuberculosis H37Rv and human proteomes indicate that, apart from the known InhA, potential targets for anti-tubercular drug design are AccD3, Fas, FabH, Pks13, DesA1/2, and DesA3. Proteins identified as essential by FBA correlate well with those previously identified experimentally through transposon site hybridisation mutagenesis. This study demonstrates the application of FBA for rational identification of potential anti-tubercular drug targets, which can indeed be a general strategy in drug design. The targets, chosen based on the critical points in the pathway, form a ready shortlist for experimental testing.  相似文献   

11.
We present here the estimation of the upper limit of the number of molecular targets in the human genome that represent an opportunity for further therapeutic treatment. We select around ∼6300 human proteins that are similar to sequences of known protein targets collected from DrugBank database. Our bioinformatics study estimates the size of ‘druggable’ human genome to be around 20% of human proteome, i.e. the number of the possible protein targets for small-molecule drug design in medicinal chemistry. We do not take into account any toxicity prediction, the three-dimensional characteristics of the active site in the predicted ‘druggable’ protein families, or detailed chemical analysis of known inhibitors/drugs. Instead we rely on remote homology detection method Meta-BASIC, which is based on sequence and structural similarity. The prepared dataset of all predicted protein targets from human genome presents the unique opportunity for developing and benchmarking various in silico chemo/bio-informatics methods in the context of the virtual high throughput screening.  相似文献   

12.
13.
Conventional drug design embraces the “one gene, one drug, one disease” philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is less likely to develop. Additionally, identifying multiple protein targets is also critical for side-effect prediction. One third of potential therapeutic compounds fail in clinical trials or are later removed from the market due to unacceptable side effects often caused by off-target binding. In the current work, we introduce a multidimensional strategy for the identification of secondary targets of known small-molecule inhibitors in the absence of global structural and sequence homology with the primary target protein. To demonstrate the utility of the strategy, we identify several targets of 4,5-dihydroxy-3-(1-naphthyldiazenyl)-2,7-naphthalenedisulfonic acid, a known micromolar inhibitor of Trypanosoma brucei RNA editing ligase 1. As it is capable of identifying potential secondary targets, the strategy described here may play a useful role in future efforts to reduce drug side effects and/or to increase polypharmacology.  相似文献   

14.
The identification of interactions between drugs and proteins plays key roles in understanding mechanisms underlying drug actions and can lead to new drug design strategies. Here, we present a novel statistical approach, namely PDTD (Predicting Drug Targets with Domains), to predict potential target proteins of new drugs based on derived interactions between drugs and protein domains. The known target proteins of those drugs that have similar therapeutic effects allow us to infer interactions between drugs and protein domains which in turn leads to identification of potential drug-protein interactions. Benchmarking with known drug-protein interactions shows that our proposed methodology outperforms previous methods that exploit either protein sequences or compound structures to predict drug targets, which demonstrates the predictive power of our proposed PDTD method.  相似文献   

15.
16.
In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be extremely useful in the process of drug development to better understand adverse side effects.  相似文献   

17.
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.  相似文献   

18.
《Phytomedicine》2014,21(1):1-14
Natural product based drugs constitute a substantial proportion of the pharmaceutical market particularly in the therapeutic areas of infectious diseases and oncology. The primary focus of any drug development program so far has been to design selective ligands (drugs) that act on single selective disease targets to obtain highly efficacious and safe drugs with minimal side effects. Although this approach has been successful for many diseases, yet there is a significant decline in the number of new drug candidates being introduced into clinical practice over the past few decades. This serious innovation deficit that the pharmaceutical industries are facing is due primarily to the post-marketing failures of blockbuster drugs. Many analysts believe that the current capital-intensive model-“the one drug to fit all” approach will be unsustainable in future and that a new “less investment, more drugs” model is necessary for further scientific growth. It is now well established that many diseases are multi-factorial in nature and that cellular pathways operate more like webs than highways. There are often multiple ways or alternate routes that may be switched on in response to the inhibition of a specific target. This gives rise to the resistant cells or resistant organisms under the specific pressure of a targeted agent, resulting in drug resistance and clinical failure of the drug. Drugs designed to act against individual molecular targets cannot usually combat multifactorial diseases like cancer, or diseases that affect multiple tissues or cell types such as diabetes and immunoinflammatory diseases. Combination drugs that affect multiple targets simultaneously are better at controlling complex disease systems and are less prone to drug resistance. This multicomponent therapy forms the basis of phytotherapy or phytomedicine where the holistic therapeutic effect arises as a result of complex positive (synergistic) or negative (antagonistic) interactions between different components of a cocktail. In this approach, multicomponent therapy is considered to be advantageous for multifactorial diseases, instead of a “magic bullet” the metaphor of a “herbal shotgun” might better explain the state of affairs. The different interactions between various components might involve the protection of an active substance from decomposition by enzymes, modification of transport across membranes of cells or organelles, evasion of multidrug resistance mechanisms among others.  相似文献   

19.
The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs.  相似文献   

20.
Si-Wu-Tang (SWT) is a Traditional Chinese Medicine (TCM) formula widely used for the treatments of gynecological diseases. To explore the pharmacological mechanism of SWT, we incorporated microarray data of SWT with our herbal target database TCMID to analyze the potential activity mechanism of SWT''s herbal ingredients and targets. We detected 2,405 differentially expressed genes in the microarray data, 20 of 102 proteins targeted by SWT were encoded by these DEGs and can be targeted by 2 FDA-approved drugs and 39 experimental drugs. The results of pathway enrichment analysis of the 20 predicted targets were consistent with that of 2,405 differentially expressed genes, elaborating the potential pharmacological mechanisms of SWT. Further study from a perspective of protein-protein interaction (PPI) network showed that the predicted targets of SWT function cooperatively to perform their multi-target effects. We also constructed a network to combine herbs, ingredients, targets and drugs together which bridges the gap between SWT and conventional medicine, and used it to infer the potential mechanisms of herbal ingredients. Moreover, based on the hypothesis that the same or similar effects between different TCM formulae may result from targeting the same proteins, we analyzed 27 other TCM formulae which can also treat the gynecological diseases, the subsequent result provides additional insight to understand the potential mechanisms of SWT in treating amenorrhea. Our bioinformatics approach to detect the pharmacology of SWT may shed light on drug discovery for gynecological diseases and could be utilized to investigate other TCM formulae as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号