首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of alternative functional components into nucleic acids can provide insight into what molecular features are necessary for an informational macromolecule to be successful. It can also provide a means to improve particular physical characteristics of nucleic acids for diagnostic and therapeutic purposes, or probe mechanisms. By testing the fitness of nucleic acid-like molecules derived by structural permutations of RNA, it may also prove possible to trace a path from simple prebiotic precursors to biotic molecules. This article describes the applications of 2',5'-phosphodiester linked, zwitterionic, and base-permuted nucleic acid derivatives.  相似文献   

2.
《Biotechnology advances》2017,35(2):168-177
Optical labels are needed for probing specific target molecules in complex biological systems. As a newly emerging category of tags for molecular imaging in live cells, the Raman label attracts much attention because of the rich information obtained from targeted and untargeted molecules by detecting molecular vibrations. Here, we list three types of Raman probes based on different mechanisms: Surface Enhanced Raman Scattering (SERS) probes, bioorthogonal Raman probes, and Resonance Raman (RR) probes. We review how these Raman probes work for detecting and imaging proteins, nucleic acids, lipids, and other biomolecules in vitro, within cells, or in vivo. We also summarize recent noteworthy studies, expound on the construction of every type of Raman probe and operating principle, sum up in tables typically targeting molecules for specific binding, and provide merits, drawbacks, and future prospects for the three Raman probes.  相似文献   

3.
4.
Cancer has been considered as complex malignant consequence of genetic mutations that control the cellular proliferation, differentiation and homeostasis, thus making tumor treatment extremely challenging. To date, a variety of cargo molecules, including nucleic acids drugs (pDNA, miRNA and siRNA), therapeutic drugs (doxorubicin, paclitaxel, daunomycin and gefitinib) and imaging agents (radioisotopes, fluorescence dyes, and MRI contrast agents) have been regarded as the potential medicines in clinical application. However, non-single therapeutic drug could induce the satisfied clinical results because of tumor heterogeneity and multiple drug resistance and the nanotechnology-based combined therapy is becoming an advanced important mode for enhanced anticancer effects. The review gathers the current advanced development to co-deliver small-molecular drugs and nucleic acids for the anticancer therapy with nanomedicine-based combination. Furthermore, the superiority is definitely presented and the barriers are detail discussed to surmount the clinical challenges. In final, future perspectives in rational direction for combined tumor therapy of drugs and nucleic acids are exhibited.  相似文献   

5.
R D Edstrom  X R Yang  G Lee  D F Evans 《FASEB journal》1990,4(13):3144-3151
Two new microscopic techniques make it possible to obtain images of biologically interesting molecules directly in air, vacuum, or under water. Scanning tunneling microscopy and atomic force microscopy both have the capacity to visualize atoms on the surface of rigid structures and provide details of molecular structure for lipids, proteins, carbohydrates, and nucleic acids. In addition to providing visualizations of individual molecules, these scanning probe techniques allow direct imaging of complexes between molecules or between molecules and higher-order subcellular structures such as membranes and cytoskeletal components. Both microscopes can be operated under a variety of ambient conditions ranging from high vacuum to above atmospheric pressure. Specimens need not be dry; both techniques have been used to image molecules in aqueous media under nearly physiological conditions. It is proposed that as these techniques mature they will allow direct observation of many molecular interactions under physiological conditions or even in vivo while they are occurring within the cell.  相似文献   

6.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

7.
The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby sequencing power can be interpreted to understand nucleic acid proximity, nucleic acid conformation, or nucleic acid‐protein interactions. Utilizing such technologies in this way has the promise to provide novel structural insights into the mechanisms that control normal cellular physiology and provide insight into how structure could be perturbed in disease.  相似文献   

8.
Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique's versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing.  相似文献   

9.
分子影像学的出现将传统的以解剖结构为成像基础的医学影像学带入到以图像阐释细胞/分子结构和功能以及病理改变的新时代。伴随着"后基因组"时代的到来以及"个体化医疗"的兴起,分子影像学对医学领域带来了里程碑式的革命并日益发挥重要作用。在分子影像领域,寻找最佳的分子影像探针/对比剂以及成像方法,以获取更多的细胞或者分子的功能及病理改变的信息日益成为热门的研究领域。纳米金籍其自身的优点在分子影像学的发展中展示出日益广阔的前景。本文就分子影像学的相关技术及纳米金在分子影像学中的应用进展作一简要综述。  相似文献   

10.
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.  相似文献   

11.
郑林丰  王悍  张贵祥 《生物磁学》2011,(10):1983-1986
分子影像学的出现将传统的以解剖结构为成像基础的医学影像学带入到以图像阐释细胞/分子结构和功能以及病理改变的新时代。伴随着“后基因组”时代的到来以及“个体化医疗”的兴起,分子影像学对医学领域带来了里程碑式的革命并日益发挥重要作用。在分子影像领域,寻找最佳的分子影像探针/对比剂以及成像方法,以获取更多的细胞或者分子的功能及病理改变的信息日益成为热门的研究领域。纳米金籍其自身的优点在分子影像学的发展中展示出日益广阔的前景。本文就分子影像学的相关技术及纳米金在分子影像学中的应用进展作一简要综述。  相似文献   

12.
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.  相似文献   

13.
Protein scaffold molecules are powerful reagents for targeting various cell signal receptors, enzymes, cytokines and other cancer-related molecules. They belong to the peptide and small protein platform with distinct properties. For the purpose of development of new generation molecular probes, various protein scaffold molecules have been labeled with imaging moieties and evaluated both in vitro and in vivo. Among the evaluated probes Affibody molecules and analogs, cystine knot peptides, and nanobodies have shown especially good characteristics as protein scaffold platforms for development of in vivo molecular probes. Quantitative data obtained from positron emission tomography, single photon emission computed tomography/CT, and optical imaging together with biodistribution studies have shown high tumor uptakes and high tumor-to-blood ratios for these probes. High tumor contrast imaging has been obtained within 1 h after injection. The success of those molecular probes demonstrates the adequacy of protein scaffold strategy as a general approach in molecular probe development.  相似文献   

14.
Triplex-forming oligonucleotides (TFOs), as DNA-binding molecules that recognize specific sequences, offer unique potential for the understanding of processes occurring on DNA and associated functions. They are also powerful DNA recognition elements for the positioning of ubiquitous molecules acting on DNA, such as anticancer drugs. A prerequisite for further development of DNA code-reading molecules including TFOs is their ability to form a complex in a cellular context: their binding affinities must be comparable to those of DNA-associated proteins. To reach this goal, chemically modified TFOs must be developed. In this work, we present triplex-forming properties (kinetics and thermodynamics) and cellular activity of G-containing locked nucleic acid-modified TFOs (TFO/LNAs). In conditions simulating physiological ones, these TFO/LNAs strongly enhanced triplex stability compared with the non-modified TFO or with the pyrimidine TFO/LNA directed against the same oligopyrimidine.oligopurine sequence, mainly by decreasing the dissociation rate constant and conferring an entropic gain. We provide evidence of their biological activity by a triplex-based mechanism, in vitro and in a cellular context, under conditions in which the parent phosphodiester oligonucleotide did not exhibit any inhibitory effect.  相似文献   

15.
《朊病毒》2013,7(2):64-66
In the past decade, the interaction between prions and nucleic acids has garnered significant attention from the scientific community. For many years, the participation of RNA and/or DNA in prion pathology has been largely ruled out by the "protein-only" hypothesis, but this is now being reconsidered. Experimental data now indicate that nucleic acids (particularly RNA), besides being carriers of genetic information, function as important key components during development, physiological responsiveness, and cellular signaling. This revelation has brought a new perspective to prion pathology. Here we discuss the role of RNA molecules in prion protein aggregation and the resulting cellular toxicity. We combine our most recent findings with existing literature to shed new light on this exciting field of research.  相似文献   

16.
The logic of using nucleic acids as pharmaceutical reagents is in part based on their capacity to interact with high affinity and specificity with other biological components. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for 'systematic evolution of ligands by exponential enrichment'. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognise ligands of different chemical origin. The method is fast, it does not require special equipment and the selected aptamers typically bind their target with high affinity and high specificity. Here we summarise the recent examples of the SELEX technique within the context of identifying high-affinity ligands against parasite target molecules.  相似文献   

17.
18.
Understanding of cellular processes and underlying molecular events requires knowledge about different aspects of molecular interactions, networks of molecules and pathways in addition to the sequence, structure and function of individual molecules involved. Databases of interacting molecules, pathways and related chemical reaction equations have been developed. The kinetic data for these interactions, which is important for mechanistic investigation, quantitative study and simulation of cellular processes and events, is not provided in the existing databases. We introduce a new database of Kinetic Data of Bio-molecular Interactions (KDBI) aimed at providing experimentally determined kinetic data of protein-protein, protein-RNA, protein-DNA, protein-ligand, RNA-ligand, DNA-ligand binding or reaction events described in the literature. KDBI contains information about binding or reaction event, participating molecules (name, synonyms, molecular formula, classification, SWISS-PROT AC or CAS number), binding or reaction equation, kinetic data and related references. The kinetic data is in terms of one or a combination of the following quantities as given in the literature of a particular event: association/dissociation or on/off rate constant, first/second/third/. order rate constant, equilibrium rate constant, catalytic rate constant, equilibrium association/dissociation constant, inhibition constant and binding affinity constant. Each entry can be retrieved through protein or nucleic acid or ligand name, SWISS-PROT AC number, ligand CAS number and full-text search of a binding or reaction event. KDBI currently contains 8273 entries of biomolecular binding or reaction events involving 1380 proteins, 143 nucleic acids and 1395 small molecules. Hyperlinks are provided for accessing references in Medline and available 3D structures in PDB and NDB. This database can be accessed at http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp.  相似文献   

19.

Background

State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

Methodology and Principal Findings

The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

Conclusions and Significance

The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.  相似文献   

20.
Although quadruplex nucleic acids are thought to be involved in many biological processes, they are massively overwhelmed by duplex DNA in the cell. Small molecules, able to probe quadruplex nucleic acids with high optical selectivity, could possibly achieve the visualization of these processes. The aim of the method described herein is to evaluate quickly the optical selectivity of quadruplex nucleic acid probes, in isothermal conditions, using widely available materials, small quantities of oligonucleotides and virtually any kind and quantity of biological competitor. The assay relies on the use of streptavidin-coated paramagnetic particles and biotinylated quadruplex forming oligonucleotides, allowing a quick and easy separation of the quadruplex target from the competitor. In the present study, two quadruplex nucleic acids (the DNA and RNA human telomeric repeats) have been used as targets while a duplex DNA oligonucleotide, total DNA, total RNA, another quadruplex nucleic acid and a protein have been used as competitors. The optical selectivity of various probes, displaying different photophysical properties and binding selectivities, has been successfully examined, allowing the identification of a best candidate for further cell microscopy experiments. This assay allows a quick and reliable assessment of the labeling properties of a quadruplex binder in cellular environment conditions. It is an interesting alternative to gel electrophoresis experiments since it is performed in solution, has a well-resolved separation system and allows easy quantifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号