首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我国植物光信号转导研究进展概述   总被引:2,自引:2,他引:0  
景艳军  林荣呈 《植物学报》2017,52(3):257-270
光是影响植物的重要环境因子,可调节植物生长和发育的各个过程,如种子萌发、形态建成、庇荫反应、开花和衰老等。自20世纪80年代以来,借助模式植物拟南芥(Arabidopsis thaliana),科学家在光调控植物生长与发育研究领域取得了重要进展,不仅鉴定了一系列光受体和重要蛋白因子,而且初步建立了光信号转导的调控网络,这其中包含中国科学家的杰出贡献。该文对近10多年来我国学者在光信号转导领域的主要研究进展进行了概述,并对该领域发展提出展望。  相似文献   

2.
Multiple mechanisms modulate brassinosteroid signaling   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
植物荫蔽胁迫的激素信号响应   总被引:1,自引:0,他引:1  
植物的生长发育与光信号密切相关, 外界光强、光质的变化会改变植物的生长发育状态。在自然或人工生态系统中, 植株个体的光环境往往会被其周围植物所影响, 导致荫蔽胁迫, 其主要表现为光合有效辐射以及红光与远红光比值(R:FR)降低。荫蔽胁迫对植物生长发育的多个时期均有影响, 如抑制种子萌发、促进幼苗下胚轴伸长及促进植物花期提前等, 这对农业生产不利, 会导致作物产量以及品质的降低。植物激素是调控植物生长发育的关键内源因子。大量研究表明, 生长素(IAA)、赤霉素(GA)及油菜素甾醇(BR)等植物激素均参与介导植物的荫蔽胁迫响应。当植物处于荫蔽胁迫时, 光信号的改变会影响植物激素的合成及信号转导。不同植物激素对荫蔽胁迫的响应各不相同, 但其信号通路之间却存在互作关系, 从而形成复杂的网络状调控路径。该文总结了几种主要植物激素(生长素、赤霉素、油菜素甾醇及乙烯)响应荫蔽胁迫的机理, 重点论述了荫蔽胁迫对植物激素合成及信号通路的影响, 以及植物激素调控荫蔽胁迫下植物生长的分子机理, 并对未来潜在的研究热点进行了分析。  相似文献   

5.
The plant hormone ethylene modulates growth and development and mediates diverse stresses and pathogens. Genetic studies with a laboratory reference plant, Arabidopsis, enabled researchers first to identify and place several key signaling components in a linear pathway for hormone signaling. Biochemical and cellular investigations have now led us to integrate functionally these genetically identified factors within a signaling context. Multi-step regulation of protein stability that accompanies phosphorylation/de-phosphorylation appears to be a central and underlying molecular mechanism. Here, we briefly summarize recent findings in such post-translational regulation of ethylene signaling factors. Based on this, we can postulate a new framework and formulate specific questions to unravel the emerging dynamics and complexity of ethylene signaling.  相似文献   

6.
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to “functionalize” many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.  相似文献   

7.
8.
Light-regulated transcriptional networks in higher plants   总被引:4,自引:0,他引:4  
  相似文献   

9.
Light signals have profound morphogenic effects on plant development. Signals perceived by the red/far‐red absorbing phytochrome family of photoreceptors and the blue/green/ UV‐A absorbing cryptochrome photoreceptor converge on a group of pleiotropic gene products defined by the COP/DET loci to control the pattern of development. The signaling pathway, although still undefined, includes several classic signaling molecules, such as G‐proteins, calcium, calmodulin, and cGMP. A separate signaling pathway is involved in the modulation of the phototropic response. Additional mutants have been identified that affect subsets of light signaling responses. This review provides an overview of our current understanding of the light signaling process, in particular recent genetic and biochemical advances.  相似文献   

10.
As sessile organisms, plants modulate their growth rate and development according to the continuous variation in the conditions of their surrounding environment, an ability referred to as plasticity. This ability relies on a web of interactions between signaling pathways triggered by endogenous and environmental cues. How changes in environmental factors are interpreted by the plant in terms of developmental or growth cues or, in other words, how they contribute to plant plasticity is a current, major question in plant biology. Light stands out among the environmental factors that shape plant development. Plants have evolved systems that allow them to monitor both quantitative and qualitative differences in the light that they perceive, that render important changes in their growth habit. In this review we focus on recent findings about how information from this environmental cue is integrated during de-etiolation and in the shade-avoidance syndrome, and modulated by several hormone pathways—the endogenous cues. In some cases the interaction between a hormone and the light signaling pathways is reciprocal, as is the case of the gibberellin pathway, whereas in other cases hormone pathways act downstream of the environmental cue to regulate growth. Moreover, the circadian clock adds an additional layer of regulation, which has been proposed to integrate the information provided by light with that provided by hormone pathways, to regulate daily growth.  相似文献   

11.
12.
13.
As two of the most important environmental factors, light and temperature regulate almost all aspects of plant growth and development. Under natural conditions, light is accompanied by warm temperatures and darkness by cooler temperatures, suggesting that light and temperature are tightly associated signals for plants. Indeed, accumulating evidence shows that plants have evolved a wide range of mechanisms to simultaneously perceive and respond to dynamic changes in light and temperature. Notably, the photoreceptor phytochrome B (phyB) was recently shown to function as a thermosensor, thus reinforcing the notion that light and temperature signaling pathways are tightly associated in plants. In this review, we summarize and discuss the current understanding of the molecular mechanisms integrating light and temperature signaling pathways in plants, with the emphasis on recent progress in temperature sensing, light control of plant freezing tolerance, and thermomorphogenesis. We also discuss the questions that are crucial for a further understanding of the interactions between light and temperature signaling pathways in plants.  相似文献   

14.
15.
Nitric oxide as a signal in plants.   总被引:44,自引:0,他引:44  
Molecular, genetic and biochemical studies have identified key players in the signaling pathways regulating growth and development, as well as defense responses in plants. Recently, nitric oxide (NO) - the versatile and powerful effector of animal redox-regulated signaling and immune responses - was shown to mediate plant defense responses against pathogens. Interestingly, several key components involved in NO-mediated signaling in animals also appear to be operative in plants.  相似文献   

16.
Light plays an important role in plants’ growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light‐regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far‐red, and blue light pathways but also in the UV‐B signaling pathway. UV‐B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV‐B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV‐B as a developmental cue as well as to withstand high doses of UV‐B radiation. Plants’ responses to UV‐B are an integration of its cross‐talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV‐B‐mediated plant growth regulation.  相似文献   

17.
18.
Role of mitogen-activated protein kinases in plant immunity   总被引:11,自引:0,他引:11  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号