首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In budding yeast, a highly conserved heterodimeric protein complex that is composed of the Rpb4 and Rpb7 proteins within RNA polymerase II shuttles between the nucleus and cytoplasm where it coordinates various steps of gene expression by associating with mRNAs. Although distinct stages of gene expression potentially contribute to the regulation of cellular lifespan, little is known about the underlying mechanisms. Here, we addressed the role of the dissociable Rpb4/7 heterodimeric protein complex in the regulation of replicative lifespan during various stages of gene expression in the yeast Saccharomyces cerevisiae. We observed that the loss of Rpb4 resulted in a shortened lifespan. In contrast, we found that defects in the dissociation of Rpb4/7 from the RNA polymerase core complex and in translation initiation steps affected by Rpb4/7 did not impact lifespan. Tandem affinity purification experiments demonstrated that Rpb7 physically associates with Tpk2 and Pat1, which are both implicated in mRNA degradation. Consistent with this data, the loss of the mRNA decay regulators Pat1 and Dhh1 reduced the cellular lifespan. In summary, our findings further reinforce the pivotal role of Rpb4/7 in the coordination of distinct steps of gene expression and suggest that among the many stages of gene expression, mRNA decay is a critical process that is required for normal replicative lifespan.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Rpb4 and Rpb7, the fourth and the seventh largest subunits of RNA polymerase II, form a heterodimer in Saccharomyces cerevisiae. To identify the site of interaction between these subunits, we constructed truncation mutants of both these proteins and carried out yeast two hybrid analysis. Deletions in the amino and carboxyl terminal domains of Rpb7 abolished its interaction with Rpb4. In comparison, deletion of up to 49 N-terminal amino acids of Rpb4 reduced its interaction with Rpb7. Complete abolishment of interaction between Rpb4 and Rpb7 occurred by truncation of 1-106, 1-142, 108-221, 172-221 or 198-221 amino acids of Rpb4. Use of the yeast two-hybrid analysis in conjunction with computational analysis of the recently reported crystal structure of Rpb4/Rpb7 sub-complex allowed us to identify regions previously not suspected to be involved in the functional interaction of these proteins. Taken together, our results have identified the regions that are involved in interaction between the Rpb4 and Rpb7 subunits of S. cerevisiae RNA polymerase II in vivo.  相似文献   

18.
Rpb4, a subunit of RNA Polymerase II plays an important role in various stress responses in budding yeast, Saccharomyces cerevisiae. In response to nitrogen starvation, diploid yeast undergoes a dimorphic transition to filamentous pseudohyphal growth, which is regulated through cAMP-PKA and MAP kinase pathway. In the present study, we show that disruption of Rpb4 leads to enhanced pseudohyphal growth, which is independent of nutritional status. We observed that the rpb4Delta/rpb4Delta cells exhibit pseudohyphae even in the absence of functional MAP kinase and cAMP-PKA pathways. Genome-wide expression profiling showed that in the absence of Rpb4 several genes controlling mother daughter cell separation are down regulated. Our genetic studies also provide evidence for involvement of RNA Pol II subunit Rpb4 in the expression of genes downstream of the RAM pathway. Finally, we show that this effect on expression of RAM pathway may at least be partially responsible for the pseudohyphal phenotype of rpb4Delta/rpb4Delta cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号