首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Post-translational modifications to histone proteins and methylation of DNA comprise the epigenome of a cell. The epigenome, which changes through development, controls access to our genes. Recent advances in DNA sequencing technology has led to genome-wide distribution data for a limited number of histone modifications in mammalian stem cells and some differentiated lineages. These studies reveal predictive correlations between histone modifications, different classes of gene and chromosomal features. Moreover, this glimpse into our epigenome challenges current ideas about regulation of gene expression. Many genes in stem cells are poised for expression with initiated RNA polymerase II at the promoter. This state is maintained by an epigenetic mark through multiple lineages until the gene is expressed.  相似文献   

8.
9.
10.
Epigenetic modifications are critical determinants of cellular and developmental states. Epigenetic changes, such as decreased H3K27me3 histone methylation on insulin/IGF1 genes, have been previously shown to modulate lifespan through gene expression regulation. However, global epigenetic changes during aging and their biological functions, if any, remain elusive. Here, we examined the histone modification H3K4 dimethylation (H3K4me2) in the prefrontal cortex of individual rhesus macaques at different ages by chromatin immunoprecipitation, followed by deep sequencing (ChIP‐seq) at the whole genome level. Through integrative analysis of the ChIP‐seq profiles with gene expression data, we found that H3K4me2 increased at promoters and enhancers globally during postnatal development and aging, and those that correspond to gene expression changes in cis are enriched for stress responses, such as the DNA damage response. This suggests that metabolic and environmental stresses experienced by an organism are associated with the progressive opening of chromatin. In support of this, we also observed increased expression of two H3K4 methyltransferases, SETD7 and DPY30, in aged macaque brain.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Mesenchymal stem cells (MSCs) of nonembryortic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem ceils, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide historic H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways,cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.  相似文献   

18.
Jiang H  Shukla A  Wang X  Chen WY  Bernstein BE  Roeder RG 《Cell》2011,144(4):513-525
Histone H3K4 methylation is associated with active genes and, along with H3K27 methylation, is part of a bivalent chromatin mark that typifies poised developmental genes in embryonic stem cells (ESCs). However, its functional roles in ESC maintenance and differentiation are not established. Here we show that mammalian Dpy-30, a core subunit of the SET1/MLL histone methyltransferase complexes, modulates H3K4 methylation in vitro, and directly regulates chromosomal H3K4 trimethylation (H3K4me3) throughout the mammalian genome. Depletion of Dpy-30 does not affect ESC self-renewal, but significantly alters the differentiation potential of ESCs, particularly along the neural lineage. The differentiation defect is accompanied by defects in gene induction and in H3K4 methylation at key developmental loci. Our results strongly indicate an essential functional role for Dpy-30 and SET1/MLL complex-mediated H3K4 methylation, as a component of the bivalent mark, at developmental genes during the ESC fate transitions.  相似文献   

19.
The identity of embryonic stem cells (ESCs) is controlled by a set of pluripotency genes, including Oct4, Sox2, Nanog, and Fgf4. How their expression is repressed during differentiation and reactivated during reprogramming is largely unknown. Here, using mouse ESCs as well as F9 and P19 cells (mouse embryonal carcinoma cell lines, P19 being considered further differentiated than F9 cells) as models, we found that HDAC inhibitors elevated Fgf4 expression in P19 cells, but reduced it in F9 cells. We also observed that HDAC inhibitors enhanced the expression of Fgf4 and a subset of pluripotency genes in differentiated ESCs, but reduced their expression in undifferentiated and less differentiated ESCs. Mechanistically, we observed more HDAC1 recruitment and a weaker association of histone 4 lysine 5 acetylation at the Fgf4 enhancer in P19 cells compared to F9 cells. Additionally, we demonstrated the interaction between Sox2 and HDAC1 both in vitro and in vivo, implicating a possible role for Sox2 in the recruitment of HDAC1 to the Fgf4 enhancer. We also found that Nanog bound to the Fgf4 enhancer, and this binding was stronger in F9 cells, indicating the involvement of Nanog in the regulation of Fgf4 expression in undifferentiated and less differentiated pluripotent stem cells. This study uncovers an important role of HDAC1 and histone modifications in the repression of Fgf4 and perhaps other pluripotency genes during ESC differentiation. Our results also suggest that HDAC inhibitors may promote reprogramming partially through activating pluripotency genes at some intermediate stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号