首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylation of daphnetin (7,8-dihydroxycoumarin) to its 8-methyl derivative is catalyzed by a wheat (Triticum aestivum L.) O-methyltransferase (TaOMT1). This enzyme is regulated by cold and photosystem II excitation pressure (plastid redox state). Here, we investigated the biological significance of this methylation and its potential role in modulating the activity of kinases in wheat. To identify the potential kinases that may interact with daphnetin in wheat, the soluble protein extract from aerial parts of cold-acclimated wheat was purified by DEAE-cellulose separation and affinity chromatography on a daphnetin derivative (7,8-dihydroxy-4-coumarin acetic acid)-EAH sepharose column. Mass spectrometric analysis indicated that wheat phosphoribulokinase (TaPRK) is the major kinase that binds to daphnetin. This TaPRK plays an important role in regulating the flow of carbon through the Calvin cycle, by catalyzing the final step in the regeneration of ribulose 1,5-bisphosphate from ribulose-5-phosphate (Ru5P) and ATP. The activities of TaPRK, endogenous or recombinant, are inhibited by daphnetin in a specific and dose-dependent manner, but not by its monomethyl derivative (7-methyl, 8-hydroxycoumarin). Furthermore, HPLC-MS analysis of wheat extracts reveals that 7,8-dimethoxycoumarin is more abundant than its monomethyl derivative. The results also show that cold acclimation does not alter the level of TaPRK mRNA or its enzyme activity, and thus ensures the stable generation of ribulose 1,5-biphosphate.  相似文献   

2.
Seasonal expression of caffeoyl-CoA O-methyltransferase (EC 2.1.1.104) was analyzed in aspen developing secondary xylem in parallel with caffeate O-methyltransferase (EC 2.1.1.68). Enzyme activity and mRNA levels for both enzymes peaked in the middle of the growing season. These results strongly suggest that both forms of O-methyltransferase were actively participating in lignin precursor biosynthesis during the growing season. To determine the role of each enzyme form, xylem extracts from two days in the growing season were assayed with four substrates: caffeoyl-CoA, 5-hydroxyferuloyl-CoA, caffeate acid and 5-hydroxyferulic acid. Recombinant forms of caffeoyl-CoA and caffeate O-methyltransferase were also assayed with these substrates. The recombinant enzymes have different substrate specificity with the caffeoyl-CoA O-methyltransferase being essentially specific for CoA ester substrates with a preference for caffeoyl-CoA, while caffeate O-methyltransferase utilized all four substrates with a preference for the free acid forms. We suggest that caffeoyl-CoA O-methyltransferase is likely to be responsible for biosynthesis of lignin precursors in the guaiacyl pathway and may represent a more primitive enzyme form leftover from very early land plant evolution. Caffeate O-methyltransferase is more likely to be responsible for lignin precursor biosynthesis in the syringyl pathway, especially since it can catalyze methylation of 5-hydroxyferuloyl-CoA quite effectively. This latter enzyme form then may be considered a more recently evolved component of the lignin biosynthetic pathways of the evolutionarily advanced plants such as angiosperms.  相似文献   

3.
Two types of structurally distinct O-methyltransferases mediate the methylation of hydroxylated monomeric lignin precursors in angiosperms. Caffeate 3-O-methyltransferase (COMT; EC 2.1.1.68) methylates the free acids and caffeoyl CoA 3-O-methyltransferase (CCoAOMT; EC 2.1.1.104) methylates coenzyme A esters. Recently, we reported a novel hydroxycinnamic acid/hydroxycinnamoyl CoA ester O-methyltransferase (AEOMT) from loblolly pine differentiating xylem that was capable of methylating both acid and ester precursors with similar efficiency. In order to determine the possible existence and role of CCoAOMT in lignin biosynthesis in gymnosperms, a 1.3 kb CCoAOMT cDNA was isolated from loblolly pine that showed 79–82% amino acid sequence identity with many angiosperm CCoAOMTs. The recombinant CCoAOMT expressed in Escherichia coli exhibited a significant methylating activity with hydroxycinnamoyl CoA esters whereas activity with hydroxycinnamic acids was insignificant. Moreover, 3.2 times higher catalytic efficiency for methylating caffeoyl CoA over 5-hydroxyferuloyl CoA was observed which could serve as a driving force towards synthesis of guaiacyl lignin. The secondary xylem-specific expression of CCoAOMT was demonstrated using RNA blot analysis, western blot analysis, and O-methyltransferase enzyme assays. In addition, Southern blot analysis indicated that CCoAOMT may exist as a single-copy gene in loblolly pine genome. The transgenic tobacco plants carrying loblolly pine CCoAOMT promoter-GUS fusion localized the site of GUS activity at the secondary xylem tissues. These data suggest that CCoAOMT, in addition to AEOMT, plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine.  相似文献   

4.
The involvement of O-sulphate esters in the directed O-methylation was investigated in vitro with a dialysed "high-speed' supernatant from rat liver as the enzyme preparation and the catechol compound 3,4-dihydroxybenzoic acid as the substrate. The enzyme reactions involved were studied separately with the O-methylated and O-sulphated derivatives. The rate of hydrolysis by arylsulphatase was 14.5 nmol/min per mg of protein for 3-methoxy-4-sulphonyloxybenzoic acid and 10.1 nmol/min per mg of protein for 4-methoxy-3-sulphonyloxybenzoic acid. The sulphotransferase activity towards the guaiacols 4-hydroxy-3-methoxybenzoic acid and 3-hydroxy-4-methoxybenzoic acid was 570pmol of 4-O-sulphated and 350pmol of 3-O-sulphated product formed/min per mg of protein. The 3-O- and 4-O-sulphate esters of 3,4-dihydroxybenzoic acid could not serve as substrates for the catechol O-methyltransferase reaction. When either ester was incubated in the presence of S-adenosyl-L-methionine, but without the arylsulphatase inhibitor KH2PO4, 3,4-dihydroxybenzoic acid was formed, which was subsequently O-methylated in a meta/para ratio of 4.6. It is concluded that O-methylation can precede O-sulphation but that O-sulphation prevents further metabolism by O-methylation. Also O-sulphate esters do not have a directing effect on O-methylation. From the study of the simultaneous action of sulphotransferase and catechol O-methyltransferase on 3,4-dihydroxybenzoic acid we conclude that O-sulphation and O-methylation proceed independently of each other under the assay conditions used, both directed preferentially to the 3-hydroxy group.  相似文献   

5.
Lignin, a complex phenylpropanoid compound, is polymerized from the monolignols p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These three monolignols differ only by the 3- and 5-methoxyl groups. Therefore, enzymatic reactions controlling the methylations of the 3- and 5-hydroxyls of monolignol precursors are critical to determine the lignin composition. Recent biochemical and transgenic studies have indicated that the methylation pathways in monolignol biosynthesis are much more complicated than we have previously envisioned. It has been demonstrated that caffeoyl CoA O-methyltransferase plays an essential role in the synthesis of guaiacyl lignin units as well as in the supply of substrates for the synthesis of syringyl lignin units. Caffeic acid O-methyltransferase has been found to essentially control the biosynthesis of syringyl lignin units. These new findings have greatly enriched our knowledge on the methylation pathways in monolignol biosynthesis.  相似文献   

6.
The lignin structure and enzyme activities of normal and brown-midrib (BMR-6) mutant lines of Sorghum bicolor have been compared to identify the enzyme(s) involved in the reduction of the lignin content of the mutant. The results indicate that cinnamyl-alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase are depressed in the BMR-6 line, whereas the structural modifications correspond only to a reduction of CAD activity. Apparently, the change in the Sorghum lignin content, caused by depression of CAD activity, is accompanied by the incorporation of cinnamaldehydes into the core lignin.Abbreviations CAD cinnamyl-alcohol dehydrogenase - HPLC high-performance liquid chromatography - m/z mass number - OMT caffeic acid O-methyltransferase  相似文献   

7.
O methylation of acetovanillone at 4 position by C2H3Cl and S-adenosyl[methyl-2H3]methionine was monitored in whole mycelia of Phanerochaete chrysosporium in the presence and absence of S-adenosylhomocysteine. Both the amount of the methylation product, 3,4-dimethoxyacetophenone, and the percent C2H3 incorporation into the 4-methoxyl group of the compound were determined. The results strongly suggest the presence of biochemically distinct systems for O methylation of acetovanillone utilizing S-adenosylmethionine and chloromethane, respectively, as the methyl donor. The S-adenosylmethionine-dependent enzyme is induced early in the growth cycle, with activity attaining an initial maximum after 55 h of incubation. Methylation by this enzyme is totally suppressed by 1 mM S-adenosylhomocysteine over almost the entire growth cycle. S-Adenosylmethionine-dependent O-methyltransferase activity is detectable in cell extracts, and the purification and characterization of the enzyme are described elsewhere (C. Coulter, J. T. Kennedy, W. C. McRoberts, and D. B. Harper, Appl. Environ. Microbiol. 59:706-711, 1993). The chloromethane-utilizing methylation system is absent in early growth but attains peak activity in the mid-growth phase after 72 h of incubation. The system is not significantly inhibited by S-adenosylhomocysteine at any stage of growth. No chloromethane-dependent O-methyltransferase activity is detectable in cell extract, suggesting that the enzyme is membrane bound and/or part of a multienzyme complex. Although the biochemical role of the chloromethane-dependent methylation system in metabolism is not known, one possible function could be the regeneration of veratryl alcohol degraded by the attack of lignin peroxidase.  相似文献   

8.
Dual methylation pathways in lignin biosynthesis   总被引:9,自引:0,他引:9       下载免费PDF全文
R Zhong  WH III  J Negrel    ZH Ye 《The Plant cell》1998,10(12):2033-2046
Caffeoyl-coenzyme A (CoA) O-methyltransferase (CCoAOMT) has been proposed to be involved in an alternative methylation pathway of lignin biosynthesis. However, no direct evidence has been available to confirm that CCoAOMT is essential for lignin biosynthesis. To understand further the methylation steps in lignin biosynthesis, we used an antisense approach to alter O-methyltransferase (OMT) gene expression and investigated the consequences of this alteration. We generated transgenic tobacco plants with a substantial reduction in CCoAOMT as well as plants with a simultaneous reduction in both CCoAOMT and caffeic acid O-methyltransferase (CAOMT). Lignin analysis showed that the reduction in CCoAOMT alone resulted in a dramatic decrease in lignin content. The reduction in CCoAOMT also led to a dramatic alteration in lignin composition. Both guaiacyl lignin and syringyl lignin were reduced in the transgenic plants. However, guaiacyl lignin was preferentially reduced, which resulted in an increase in the S/G (syringl/guaiacyl) ratio. We have also analyzed lignin content and composition in transgenic plants having a simultaneous reduction in both CCoAOMT and CAOMT. The reduction in both OMTs resulted in a further decrease in total lignin content. This is in sharp contrast to the effect that resulted from the reduction in CAOMT alone, which only decreased the syringl lignin unit without a reduction in overall lignin content. These results unequivocally demonstrate that methylation reactions in lignin biosynthesis are catalyzed by both CCoAOMT and CAOMT.  相似文献   

9.
A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated products, which can be separated by high-performance liquid chromatography and measured with fluorimetric detection. The physiological presence of both substrate and products could be detected in crude melanoma cell extracts. The limit of sensitivity for detection of the O-methylated products is less than 0.5 pmol per injection. The method was compared with an earlier described HPLC method which makes use of uv detection of O-methylated products of 3,4-dihydroxybenzoic acid. The described method will be used to study the importance of catechol O-methyltransferase as a protective enzyme in (malignant) melanocytes.  相似文献   

10.
In order to maintain optimal photosynthetic activity under a changing light environment, plants and algae need to balance the absorbed light excitation energy between photosystem I and photosystem II through processes called state transitions. Variable light conditions lead to changes in the redox state of the plastoquinone pool which are sensed by a protein kinase closely associated with the cytochrome b 6 f complex. Preferential excitation of photosystem II leads to the activation of the kinase which phosphorylates the light-harvesting system (LHCII), a process which is subsequently followed by the release of LHCII from photosystem II and its migration to photosystem I. The process is reversible as dephosphorylation of LHCII on preferential excitation of photosystem I is followed by the return of LHCII to photosystem II. State transitions involve a considerable remodelling of the thylakoid membranes, and in the case of Chlamydomonas, they allow the cells to switch between linear and cyclic electron flow. In this alga, a major function of state transitions is to adjust the ATP level to cellular demands. Recent studies have identified the thylakoid protein kinase Stt7/STN7 as a key component of the signalling pathways of state transitions and long-term acclimation of the photosynthetic apparatus. In this article, we present a review on recent developments in the area of state transitions.  相似文献   

11.
Previous comparisons of winter rye plants (Secale cereale L. cv. Musketeer) grown in a combination of specific temperature (degrees C)/irradiance (micromol m(-2) s(-1)) regimes (20/50; 20/250; 20/800; 5/50; 5/250) revealed (1) that photosynthetic acclimation to low temperature mimics photosynthetic acclimation to high light because both conditions result in comparable reduction states of photosystem II (PSII), that is, comparable PSII excitation pressure; (2) that the relative redox state of PSII also appears to regulate a specific cold acclimation gene, Wcs19. In order to identify additional genes regulated differentially by either low temperature, irradiance or excitation pressure, we initiated a detailed analysis of gene expression. We identified and characterized 42 differentially expressed genes from wheat and rye. Based on their patterns of regulation under the five growth conditions employed, 37 of the cDNAs could be classified into four groups: genes regulated by PSII excitation pressure, low temperature, growth irradiance and interaction between growth temperature and irradiance. Partial sequence analyses revealed that several of these genes encode known chloroplastic proteins such as ELIPs, transketolase, carbonic anhydrase and Mg-chelatase. However, five of the genes could not be classified unambiguously into any one of these four categories. The implications of these results and the limitations of the experimental design are discussed in terms of larger-scale genomic studies designed to understand the interactions of multiple abiotic stresses to which a plant may be exposed when examining regulation of gene expression.  相似文献   

12.
The activity of O-methyltransferase (OMT) and the content of lignin in various organs of 12- to 14-day-old seedlings of kidney bean (Phaseolus vulgarisL., cv. Saksa) were determined. The epicotyl and hypocotyl were characterized by the highest OMT activity, and the leaves, by the lowest OMT activity. At the same time, the lignin content gradually increased in the following order: leaves < epicotyl < hypocotyl < roots. Thus, in kidney bean seedlings, there is no direct relationship between the OMT activity and the lignin content. It is suggested that lignin biosynthesis is limited by biosynthetic steps other than O-methylation of caffeic and 5-hydroxyferulic acids affected by OMT.  相似文献   

13.
Cold acclimation and photoinhibition of photosynthesis in Scots pine   总被引:13,自引:0,他引:13  
Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem II reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20° C. The amounts and activities of the majority of analyzed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly Superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.Abbreviations APX ascorbate peroxidase - DHA dehydroascorbate - DHAR dehydroascorbate reductase - Fm maximal fluorescence when all reaction centres are closed - Fv/Fm maximum photochemical yield of PSII - GR glutathione reductase - GSH reduced glutathione - Je rate of photosynthetic electron transport - MDAR monodehydroascorbate reductase - qN nonphotochemical quenching of fluorescence - qP photochemical quenching of fluorescence - SOD superoxide dismutase This work was supported by the Swedish Natural Science Research Council and the National Natural Science Foundation of China.  相似文献   

14.
Photosystem II plays an especially important role in the response of photosynthesis in higher plants to environmental perturbations and stresses. The relationship between photosystem II and photosynthetic CO2 assimilation is examined and factors identified that may modulate photosystem II activity in vivo. Particular attention is given to non-photochemical quenching of excitation energy, photoinhibition, state transitions, protein phosphorylation and biogenesis of photosystem II.  相似文献   

15.
Streptomyces griseus contains the srs operon, which is required for phenolic lipid biosynthesis. The operon consists of srsA, srsB, and srsC, which encode a type III polyketide synthase, an O-methyltransferase, and a flavoprotein hydroxylase, respectively. We previously reported that the recombinant SrsA protein synthesized 3-(13'-methyltetradecyl)-4-methylresorcinol, using iso-C(16) fatty acyl-coenzyme A (CoA) as a starter substrate and malonyl-CoA and methylmalonyl-CoA as extender substrates. An in vitro SrsA reaction using [(13)C(3)]malonyl-CoA confirmed that the order of extender substrate condensation was methylmalonyl-CoA, followed by two extensions with malonyl-CoA. Furthermore, SrsA was revealed to produce an alkylresorcylic acid as its direct product rather than an alkylresorcinol. The functional SrsB protein was produced in the membrane fraction in Streptomyces lividans and used for the in vitro SrsB reaction. When the SrsA reaction was coupled, SrsB produced alkylresorcinol methyl ether in the presence of S-adenosyl-l-methionine (SAM). SrsB was incapable of catalyzing the O-methylation of alkylresorcinol, indicating that alkylresorcylic acid was the substrate of SrsB and that SrsB catalyzed the conversion of alkylresorcylic acid to alkylresorcinol methyl ether, namely, by both the O-methylation of the hydroxyl group (C-6) and the decarboxylation of the neighboring carboxyl group (C-1). O-methylated alkylresorcylic acid was not detected in the in vitro SrsAB reaction, although it was presumably stable, indicating that O-methylation did not precede decarboxylation. We therefore postulated that O-methylation was coupled with decarboxylation and proposed that SrsB catalyzed the feasible SAM-dependent decarboxylative methylation of alkylresorcylic acid. To the best of our knowledge, this is the first report of a methyltransferase that catalyzes decarboxylative methylation.  相似文献   

16.
S-Adenosyl-L-methionine-dependent caffeate O-methyltransferase (COMT, EC 2.1.1.6) has traditionally been thought to catalyze the methylation of caffeate and 5- hydroxyferulate for the biosynthesis of syringyl monolignol, a lignin constituent of angiosperm wood that enables efficient lignin degradation for cellulose production. However, recent recognition that coniferyl aldehyde prevents 5-hydroxyferulate biosynthesis in lignifying tissue, and that the hydroxylated form of coniferyl aldehyde, 5-hydroxyconiferyl aldehyde, is an alternative COMT substrate, demands a re-evaluation of the role of COMT during monolignol biosynthesis. Based on recombinant aspen (Populus tremuloides) COMT enzyme kinetics coupled with mass spectrometry analysis, this study establishes for the first time that COMT is in fact a 5-hydroxyconiferyl aldehyde O-methyltransferase (AldOMT), and that 5-hydroxyconiferyl aldehyde is both the preferred AldOMT substrate and an inhibitor of caffeate and 5-hydroxyferulate methylation, as measured by K(m) and K(i) values. 5-Hydroxyconiferyl aldehyde also inhibited the caffeate and 5-hydroxyferulate methylation activities of xylem proteins from various angiosperm tree species. The evidence that syringyl monolignol biosynthesis is independent of caffeate and 5-hydroxyferulate methylation supports our previous discovery that coniferyl aldehyde prevents ferulate 5-hydroxylation and at the same time ensures a coniferyl aldehyde 5-hydroxylase (CAld5H)-mediated biosynthesis of 5-hydroxyconiferyl aldehyde. Together, our results provide conclusive evidence for the presence of a CAld5H/AldOMT-catalyzed coniferyl aldehyde 5-hydroxylation/methylation pathway that directs syringyl monolignol biosynthesis in angiosperms.  相似文献   

17.
18.
Phenylpropanoid deficiency affects the course of plant acclimation to cold   总被引:8,自引:0,他引:8  
The effects of phenylpropanoid deficiency on plant growth, photosynthetic efficiency of the photosystem II and freezing tolerance of leaves were studied during acclimation of winter oilseed rape plants ( Brassica napus L. var. oleifera L. cv Jantar) at low temperature. Application of 2-amino-2-indanophosphonic acid inhibited phenylalanine ammonia-lyase (E.C. 4.3.1.5) activity by about 90%. This was followed by a marked reduction of soluble phenolics (in particular hydroxycinnamic acids) and anthocyanins in leaves. Inhibition of the cold-promoted incorporation of ferulic acid into cell walls was also observed. The reduction of phenylpropanoid contents was associated with: (1) partial abrogation of the cold-induced growth effects, such as inhibition of leaf fresh weight increments and accumulation of dry matter, proteins and cell walls; (2) decreased photochemical efficiency of photosystem II in low temperature-affected leaves; and (3) decreased ability of leaves to develop tolerance to the extracellular formation of ice. These findings are discussed in terms of phenylpropanoids' role in plant responses to cold (> 0°C) and freezing temperatures.  相似文献   

19.
Previously published results showed that high relative reduction state of PSII (PSII excitation pressure) during both early seedling growth (prehardening) as well as cold deacclimation caused significant changes in growth pattern. The differences in elongation growth rate were related to the cold acclimation of photosynthetic apparatus and to frost resistance. To study changes in the hormonal balance connected with alterations in elongation growth rate observed during prehardening and deacclimation under different PSII excitation pressure (modulated by day-temperatures), endogenous concentration of ABA, GA3 and GA-like substances (GAs) were analysed. Analyses were also performed during cold acclimation and reacclimation of plants characterized by different elongation growth rate triggered by prehardening or deacclimation under different day-temperatures. Growth under high PSII excitation pressure (prehardening) resulted in a significant increase in ABA and a considerable decrease in GAs contents. On the other hand, different ABA content played almost no role in controlling growth rate during cold deacclimation and subsequent reacclimation, when the induction of elongation growth was connected with the changes in concentration of GAs including GA3. The possible role of ABA and GAs in controlling prehardening, cold acclimation and deacclimation is discussed.  相似文献   

20.
The indole alkaloid gramine occurs in leaves of certain barley (Hordeum vulgare L.) cultivars but not in others. A gene sequence in barley that earlier was characterized as a jasmonate-induced O-methyltransferase (MT) (EC 2.1.1.6, GenBank accession U54767) was here found to be absent in some barley cultivars and breeding lines that all lacked gramine. The cDNA was cloned and expressed in Escherichia coli and the recombinant protein purified. The purified recombinant protein methylated two substrates in the pathway to gramine: 3-aminomethylindole (AMI) and N-methyl-3-aminomethylindole (MAMI) at a high rate, with Km-values of 77 microM and 184 microM, respectively. In contrast, the protein did not exhibit any detectable methylation with the earlier suggested substrate for O-methylation, caffeic acid. A number of cultivars and breeding lines of barley were analyzed for presence of the U54767 gene sequence and MT protein and the enzyme activity in vitro with MAMI or caffeic acid as substrates. The results showed a clear relationship between the presence of the MT gene, the MT protein and N-methyltransferase activity, and confirmed the identification of the gene as coding for an N-methyltransferase (NMT, EC 2.1.1) and being involved in gramine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号