首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe theuse of an in vivo human bronchial xenograft model of cystic fibrosis(CF) and non-CF airways to investigate pathophysiological alterationsin airway surface fluid (ASF) volume (Vs) and Cl content.Vs was calculated based on thedilution of an impermeable marker,[3H]inulin, duringharvesting of ASF from xenografts with an isosmotic Cl-free solution.These calculations demonstrated thatVs in CF xenographs (28 ± 3.0 µl/cm2;n = 17) was significantly less thanthat of non-CF xenografts (35 ± 2.4 µl/cm2;n = 30). The Cl concentration of ASF([Cl]s) wasdetermined using a solid-state AgCl electrode and adjusted for dilutionduring harvesting using the impermeable[3H]inulin marker.Cumulative results demonstrate small but significant elevations(P < 0.045) in[Cl]s in CF (125 ± 4 mM; n = 27) compared with non-CF(114 ± 4 mM; n = 48) xenografts.To investigate potential mechanisms by which CF airways may facilitatea higher level of fluid absorption yet retain slightly elevated levelsof Cl, we sought to evaluate the capacity of CF and non-CF airways toabsorb both 22Na and36Cl. Two consistent findings wereevident from these studies. First, in both CF and non-CF xenografts,22Na and36Cl were always absorbed in anequal molar ratio. Second, CF xenografts hyperabsorbed (~1.5-foldhigher) both 22Na and36Cl compared with non-CFxenografts. These results substantiate previously documented findingsof elevated Na absorption in CF airways and also suggest that theslightly elevated[Cl]s found in thisstudy of CF xenograft epithelia does not occur through a mechanism ofdecreased apical permeability to Cl.  相似文献   

2.
Sodium-independent Cl movement (i.e., Cl-anion exchange) has not previously been identified in the basolateral membranes of rat colonic epithelial cells. The present study demonstrates Cl-HCO3 exchange as the mechanism for 36Cl uptake in basolateral membrane vesicles (BLMV) prepared in the presence of a protease inhibitor cocktail from rat distal colon. Studies of 36Cl uptake performed with BLMV prepared with different types of protease inhibitors indicate that preventing the cleavage of the COOH-terminal end of AE2 protein by serine-type proteases was responsible for the demonstration of Cl-HCO3 exchange. In the absence of voltage clamping, both outward OH gradient (pHout/pHin: 7.5/5.5) and outward HCO3 gradient stimulated transient 36Cl uptake accumulation. However, voltage clamping with K-ionophore, valinomycin, almost completely (87%) inhibited the OH gradient-driven 36Cl uptake, whereas HCO3 gradient-driven 36Cl uptake was only partially inhibited (38%). Both electroneutral HCO3 and OH gradient-driven 36Cl uptake were 1) completely inhibited by DIDS, an anion exchange inhibitor, with a half-maximal inhibitory constant (Ki) of 26.9 and 30.6 µM, respectively, 2) not inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid(NPPB), a Cl channel blocker, 3) saturated by increasing extravesicular Cl concentration with a Km for Cl of 12.6 and 14.2 mM, respectively, and 4) present in both surface and crypt cells. Intracellular pH (pHi) was also determined with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetomethylester (BCECF-AM) in an isolated superfused crypt preparation. Removal of Cl resulted in a DIDS-inhibitable increase in pHi both in HCO3-buffered and in the nominally HCO3-free buffered solutions (0.28 ± 0.02 and 0.11 ± 0.02 pH units, respectively). We conclude that a carrier-mediated electroneutral Cl-HCO3 exchange is present in basolateral membranes and that, in the absence of HCO3, Cl-HCO3 exchange can function as a Cl-OH exchange and regulate pHi across basolateral membranes of rat distal colon. crypt glands; superfusion; intracellular pH; membrane vesicles; 36Cl uptake; Cl-anion exchange  相似文献   

3.
Pendred syndrome,characterized by congenital sensorineural hearing loss and goiter, isone of the most common forms of syndromic deafness. The gene causingPendred syndrome (PDS) encodes a protein designated pendrin,which is expressed in the thyroid, kidney, and fetal cochlea. Pendrinfunctions as an iodide and chloride transporter, but its role in thedevelopment of hearing loss and goiter is unknown. In this study, weexamined the mechanism of pendrin-mediated anion transport inXenopus laevis oocytes. Unlabeled formate added to the uptakemedium inhibited pendrin-mediated 36Cl uptake in X. laevis oocytes. In addition, the uptake of[14C]formate was stimulated in oocytes injected with PDScRNA compared with water-injected controls. These results indicate thatformate is a substrate for pendrin. Furthermore, chloride stimulatedthe efflux of [14C]formate and formatestimulated the efflux of 36Cl in oocytes expressingpendrin, results consistent with pendrin-mediated chloride/formateexchange. These data demonstrate that pendrin is functionally similarto the renal chloride/formate exchanger, which serves as an importantmechanism of chloride transport in the proximal tubule. A similarprocess could participate in the development of ion gradients withinthe inner ear.

  相似文献   

4.
In Aplysia intestine,stimulation of Na+ absorption withluminal alanine increases apical membraneK+ conductance(GK,a), whichpresumably regulates enterocyte volume during stimulatedNa+ absorption. However, themechanism responsible for the sustained increase in plasma membraneK+ conductance is not known forany nutrient-absorbing epithelium. In the present study, we have begunto test the hypothesis that the alanine-induced increase inGK,a inAplysia enterocytes results fromexocytic insertion of K+ channelsinto the apical membrane. We used the fluid-phase marker horseradishperoxidase to assess the effect of alanine on apical membraneexocytosis and conventional microelectrode techniques to assess theeffect of alanine on fractional capacitance of the apical membrane(fCa). Luminalalanine significantly increased apical membrane exocytosis from 1.04 ± 0.30 to 1.39 ± 0.38 ng · min1 · cm2.To measure fCa,we modeled the Aplysia enterocyte as adouble resistance-capacitance (RC) electric circuit arranged in series. Several criteria were tested to confirm application of the model to theenterocytes, and all satisfied the model. When added to the luminalsurface, alanine significantly increasedfCa from 0.27 ± 0.02 to 0.33 ± 0.04 (n = 10)after 4 min. There are two possible explanations for our findings:1) the increase in exocytosis, whichadds membrane to the apical plasma membrane, prevents plasma membranefracture, and 2) the increase inexocytosis delivers K+ channels tothe apical membrane by exocytic insertion. After the alanine-induceddepolarization of apical membrane potential (Va), there isa strong correlation (r = 0.96)between repolarization ofVa, whichreflects the increase inGK,a, andincrease in fCa. This correlation supports the exocytic insertion hypothesis for activation ofGK,a.

  相似文献   

5.
Separate entry pathways for phosphate and oxalate in rat brain microsomes   总被引:1,自引:0,他引:1  
ATP-dependent 45Ca uptake in rat brainmicrosomes was measured in intracellular-like media containingdifferent concentrations of PO4 and oxalate. In the absenceof divalent anions, there was a transient 45Caaccumulation, lasting only a few minutes. Addition of PO4did not change the initial accumulation but added a second stage that increased with PO4 concentration. Accumulation during thesecond stage was inhibited by the following anion transport inhibitors: niflumic acid (50 µM),4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS; 250 µM),and DIDS (3-5 µM); accumulation during the initial stage wasunaffected. Higher concentrations of DIDS (100 µM), however,inhibited the initial stage as well. Uptake was unaffected by 20 mM Na,an activator, or 1 mM arsenate, an inhibitor of Na-PO4 cotransport. An oxalate-supported 45Ca uptake was larger,less sensitive to DIDS, and enhanced by the catalytic subunit ofprotein kinase A (40 U/ml). Combinations of PO4 and oxalatehad activating and inhibitory effects that could be explained byPO4 inhibition of an oxalate-dependent pathway, but notvice versa. These results support the existence of separate transportpathways for oxalate and PO4 in brain endoplasmic reticulum.

  相似文献   

6.
Uptake and metabolism of biotin by human peripheral blood mononuclear cells   总被引:4,自引:0,他引:4  
We studied the uptake of biotin into human peripheral bloodmononuclear cells (PBMC) using[3H]biotin and studiedthe catabolism of biotin in PBMC using[14C]biotin. Over 30 min, [3H]biotin uptakewas greater at 37°C than at 25°C(KT = 2.6 ± 0.4 nM, maximal velocity = 2.9 ± 0.2 fmol · 106cells1 · 30 min1). Ouabain reduced[3H]biotin uptake to65% of control values, suggesting that biotin uptake is Na-K-ATPasedependent. Unlabeled biotin and biotin analogs reduced the uptake of[3H]biotin to22-70% of control values, suggesting the presence of acompetition for a structurally specific biotin transporter. Whenendocytosis by PBMC was stimulated by various acyl glycerols, [3H]biotin uptake was40-73% of control values; these data are consistent with thehypothesis that stimulated endocytosis reduces biotin transporterdensity on the cell surface. During a 168-h incubation, PBMC did notcatabolize[14C]biotin.

  相似文献   

7.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

8.
It has been reported thatsecretory mammary epithelial cells (MEC) release ATP, UTP, and UDP uponmechanical stimulation. Here we examined the physiological changescaused by ATP/UTP in nontransformed, clonal mouse mammary epithelia(31EG4 cells). In control conditions, transepithelial potential (apicalside negative) and resistance were 4.4 ± 1.3 mV (mean ± SD, n = 12) and 517.7 ± 39.4  · cm2, respectively. The apicalmembrane potential was 43.9 ± 1.7 mV, and the ratio of apicalto basolateral membrane resistance (RA/RB) was 3.5 ± 0.2. Addition of ATP or UTP to the apical or basolateral membranescaused large voltage and resistance changes with an EC50 of~24 µM (apical) and ~30 µM (basal). Apical ATP/UTP (100 µM)depolarized apical membrane potential by 17.6 ± 0.8 mV (n = 7) and decreasedRA/RB by a factor of3. The addition of adenosine to either side (100 µM) hadno effect on any of these parameters. The ATP/UTP responses werepartially inhibited by DIDS and suramin and mediated by a transientincrease in free intracellular Ca2+ concentration (427 ± 206 nM; 15-25 µM ATP, apical; n = 6). This Ca2+ increase was blocked by cyclopiazonic acid, by BAPTA,or by xestospongin C. 31EG4 MEC monolayers also secreted or absorbedfluid in the resting state, and ATP or UTP increased fluid secretion by5.6 ± 3 µl · cm2 · h1(n = 10). Pharmacology experiments indicate that 31EG4epithelia contain P2Y2 purinoceptors on the apical andbasolateral membranes, which upon activation stimulate apicalCa2+-dependent Cl channels and cause fluid secretion acrossthe monolayer. This suggests that extracellular nucleotides could playa fundamental role in mammary gland paracrine signaling and theregulation of milk composition in vivo.

  相似文献   

9.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

10.
Of the two known apical isoforms of theNa+/H+ exchanger (NHE) family, only the NHE3gene is regulated by glucocorticoids. The aim of these studies was toinvestigate the mechanisms underlying the effects of methylprednisolone(MP) on expression of NHE3 in the proximal and distal small intestineof suckling and adult rats. Immunoblots showed that the glucocorticoidresponsiveness in the proximal small intestine was greatest in sucklinganimals (NHE3/-actin: 0.43 ± 0.09 control vs. 1.57 ± 0.15 MP;P < 0.001), and responsiveness decreased with age with noeffect in adults (0.56 ± 0.14 vs. 0.64 ± 0.17). Distal smallintestine was responsive only in adult rats (0.49 ± 0.13 vs. 1.65 ± 0.09; P < 0.001). This pattern was confirmed at the mRNAlevel and by 22Na+ uptake. Western blot and[3H]dexamethasone mesylate binding showed thatthe responsiveness of NHE3 to glucocorticoids is directly related tothe expression of glucocorticoid receptor (GR) in the small intestine.These studies suggest that loss and gain of glucocorticoidresponsiveness in the proximal and distal small intestine,respectively, are related to age- and segment-dependent expression of GR.

  相似文献   

11.
Thecharacteristics of L-lactic acid transport across thetrophoblast basal membrane were investigated and compared with those across the brush-border membrane by using membrane vesicles isolated from human placenta. The uptake ofL-[14C]lactic acid into basal membranevesicles was Na+ independent, and an uphill transport wasobserved in the presence of a pH gradient([H+]out > [H+]in).L-[14C]lactic acid uptake exhibitedsaturation kinetics with a Km value of 5.89 ± 0.68 mM in the presence of a pH gradient.p-Chloromercuribenzenesulfonate and-cyano-4-hydroxycinnamate inhibited the initial uptake, whereas phloretin or 4,4'-diisothiocyanostilbene-2,2'-disulfonate did not.Mono- and dicarboxylic acids suppressed the initial uptake. Inconclusion, L-lactic acid transport in the basal membraneis H+ dependent and Na+ independent, as is alsothe case for the brush-border membrane transport, and itscharacteristics resemble those of monocarboxylic acid transporters.However, there were several differences in the effects of inhibitorsbetween basal and brush-border membrane vesicles, suggesting that thetransporter(s) involved in L-lactic acid transport in thebasal membrane of placental trophoblast may differ from those in thebrush-border membrane.

  相似文献   

12.
A permanent cell line with inducible expression of the humananion exchanger protein 1 (hAE1) was constructed in a derivative ofhuman embryonic kidney cells (HEK-293). In the absence of the inducer,muristerone A, the new cell line had no detectable hAE1 protein byWestern analysis or additional36Cl flux. Increasing dose andincubation time with muristerone A increased the amount of protein(both unglycosylated and glycosylated). The4,4'-dinitrostilbene-2,2'-disulfonate(DNDS)-inhibitable rapid Cl exchange flux was increased up to40-fold in induced cells compared with noninduced cells. There was noDNDS-inhibitable rapid flux component in noninduced cells. This resultdemonstrates inducible expression of a new rapid Cl transport pathwaythat is DNDS sensitive. The additional transport of36Cl and35SO4had the characteristics of hAE1-mediated transport in erythrocytes: 1) inhibition by 250 µM DNDS,2) activation of36Cl efflux by external Cl with aconcentration producing half-maximal effect of 4.8 mM,3) activation of36Cl efflux by external anionsthat was selective in the orderNO3 = Cl > Br > I, and4) activation of35SO4influx by external protons. Under the assumption that the turnovernumbers of hAE1 were the same as in erythrocytes, there was good agreement (±3-fold) between the number of copies ofglycosylated hAE1 and the induced tracer fluxes. This is the firstexpression of hAE1 in a mammalian system to track the kineticcharacteristics of the native protein.

  相似文献   

13.
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K+, Cl, and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl current (ICl,swell) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied ICl,swell and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted ICl,swell, but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl, taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane. caveolae; osmolyte; epithelial cell; chloride channel  相似文献   

14.
Péronnet, F., Y. Burelle, D. Massicotte, C. Lavoie,and C. Hillaire-Marcel. Respective oxidation of13C-labeled lactate and glucoseingested simultaneously during exercise. J. Appl.Physiol. 82(2): 440-446, 1997.The purpose ofthis experiment was to measure, by using13C labeling, the oxidation rateof exogenous lactate (25 g, as Na+,K+,Ca2+, andMg2+ salts) and glucose (75 g)ingested simultaneously (in 1,000 ml of water) during prolongedexercise (120 min, 65 ± 3% maximum oxygen uptake in 6 male subjects). The percentage of exogenous glucose and lactateoxidized were similar (48 ± 3 vs. 45 ± 5%, respectively). However, because of the small amount of oral lactate that could be tolerated without gastrointestinal discomfort, the amountof exogenous lactate oxidized was much smaller than that of exogenousglucose (11.1 ± 0.5 vs. 36.3 ± 1.3 g, respectively) andcontributed to only 2.6 ± 0.4% of the energy yield(vs. 8.4 ± 1.9% for exogenous glucose). The cumulative amount ofexogenous glucose and lactate oxidized was similar to that observedwhen 100 g of[13C]glucose wereingested (47.3 ± 1.8 vs. 50.9 ± 1.2 g, respectively). When[13C]glucose wasingested, changes in the plasma glucose13C/12Cratio indicated that between 39 and 61% of plasma glucose derived fromexogenous glucose. On the other hand, the plasma glucose 13C/12Cratio remained unchanged when[13C]lactate wasingested, suggesting no prior conversion into glucose before oxidation.

  相似文献   

15.
Three distinct mechanisms of HCO3- secretion in rat distal colon   总被引:1,自引:0,他引:1  
HCO3 secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3 secretion have revealed evidence of lumen Cl dependence, suggesting a role for apical membrane Cl/HCO3 exchange, direct examination of HCO3 secretion in isolated crypt from rat distal colon did not identify Cl-dependent HCO3 secretion but did reveal cAMP-induced, Cl-independent HCO3 secretion. Studies were therefore initiated to determine the characteristics of HCO3 secretion in isolated colonic mucosa to identify HCO3 secretion in both surface and crypt cells. HCO3 secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3 secretion (5.6 ± 0.03 µeq·h–1·cm–2) was abolished by removal of either lumen Cl or bath HCO3; this Cl-dependent HCO3 secretion was also inhibited by 100 µM DIDS (0.5 ± 0.03 µeq·h–1·cm–2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl channel blocker. 8-Bromo-cAMP induced Cl-independent HCO3 secretion (and also inhibited Cl-dependent HCO3 secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl-independent, DIDS-insensitive, saturable HCO3 secretion that was not inhibited by NPPB. Three distinct HCO3 secretory mechanisms were identified: 1) Cl-dependent secretion associated with apical membrane Cl/HCO3 exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3 exchange. chloride/bicarbonate exchange; short-chain fatty acid/bicarbonate exchange; anion channel; pH stat  相似文献   

16.
In previousstudies, our laboratory has utilized a cell line derived from the ratinner medullary collecting duct (IMCD) as a model system for mammalianrenal epithelial cell acid secretion. We have provided evidence, from aphysiological perspective, that acute cellular acidification stimulatesapical exocytosis and elicits a rapid increase in proton secretion thatis mediated by an H+-ATPase. Thepurpose of these experiments was to examine the effect of acutecellular acidification on the distribution of the vacuolar H+-ATPase in IMCD cells in vitro.We utilized the 31-kDa subunit of theH+-ATPase as a marker of thecomplete enzyme. The distribution of this subunit of theH+-ATPase was evaluated byimmunohistochemical techniques (confocal and electron microscopy), andwe found that there is a redistribution of these pumps from vesicles tothe apical membrane. Immunoblot evaluation of isolated apical membranerevealed a 237 ± 34% (P < 0.05, n = 9) increase in the 31-kDa subunitpresent in the membrane fraction 20 min after the induction of cellularacidification. Thus our results demonstrate the presence of this pumpsubunit in the IMCD cell line in vitro and that cell acidificationregulates the shuttling of cytosolic vesicles containing the 31-kDasubunit into the apical membrane.  相似文献   

17.
Stimulation of the gastric parietal cell results in a massiveredistribution ofH+-K+-ATPasefrom cytoplasmic tubulovesicles to the apical plasma membrane. Previousstudies have implicated the small GTPase rab11 in this process. Usingmatrix-assisted laser desorption mass spectrometry, we confirmed thatrab11 is associated withH+-K+-ATPase-enrichedgastric microsomes. A stoichiometry of one rab11 per six copies ofH+-K+-ATPasewas estimated. Furthermore, rab11 exists in at least three forms onrabbit gastric microsomes: the two most prominent resemble rab11a,whereas the third resembles rab11b. Using an adenoviral expressionsystem, we expressed the dominant negative mutant rab11a N124I inprimary cultures of rabbit parietal cells under the control of thetetracycline transactivator protein (tTA). The mutant was wellexpressed with a distribution similar to that of theH+-K+-ATPase.Stimulation of these cultures with histamine and IBMX was assessed bymeasuring the aminopyrine (AP) uptake relative to resting cells (APindex). In experiments on six culture preparations, stimulateduninfected cells gave an AP index of 10.0 ± 2.9, whereas parallelcultures expressing rab11a N124I were poorly responsive to stimulation,with a mean AP index of 3.2 ± 0.9. Control cultures expressing tTAalone or tTA plus actin responded equally well to stimulation, givingAP index values of 9.0 ± 3.1 and 9.6 ± 0.9, respectively. Thusinhibition by rab11a N124I is not simply due to adenoviral infection.The AP uptake data were confirmed by immunocytochemistry. In uninfectedcells,H+-K+-ATPasedemonstrated a broad cytoplasmic distribution, but it was cleared fromthe cytoplasm and associated with apically derived membranes onstimulation. In cells expressing rab11a N124I,H+-K+-ATPasemaintained its resting localization on stimulation. Furthermore, thiseffect could be alleviated by culturing infected cells in the presenceof tetracycline, which prevents expression of the mutant rab11. Wetherefore conclude that rab11a is the prominent GTPase associated withgastric microsomes and that it plays a role in parietal cell activation.

  相似文献   

18.
To evaluate the effects of contractions on thekinetics of uptake and oxidation of palmitate in a physiological musclepreparation, rat hindquarters were perfused with glucose (6 mmol/l),albumin-bound [1-14C]palmitate, andvarying amounts of albumin-bound palmitate (200-2,200 µmol/l) atrest and during muscle contractions. When plotted against the unboundpalmitate concentration, palmitate uptake and oxidation displayedsimple Michaelis-Menten kinetics with estimated maximal velocity(Vmax)and Michaelis-Menten constant(Km) values of42.8 ± 3.8 (SE)nmol · min1 · g1and 13.4 ± 3.4 nmol/l for palmitate uptake and 3.8 ± 0.4 nmol · min1 · g1and 8.1 ± 2.9 nmol/l for palmitate oxidation, respectively, at rest.Whereas muscle contractions increased theVmaxfor both palmitate uptake and oxidation to 91.6 ± 10.1 and 16.5 ± 2.3 nmol · min1 · g1,respectively, theKm remainedunchanged.Vmaxand Km estimates obtained from Hanes-Woolf plots (substrate concentration/velocity vs.substrate concentration) were not significantly different. In theresting perfused hindquarter, an increase in palmitate delivery from31.9 ± 0.9 to 48.7 ± 1.2 µmol · g1 · h1by increasing perfusate flow was associated with a decrease in thefractional uptake of palmitate so that the rates of uptake andoxidation of palmitate remained unchanged. It is concluded that therates of uptake and oxidation of long-chain fatty acids (LCFA) saturatewith an increase in the concentration of unbound LCFA in perfusedskeletal muscle and that muscle contractions, but not an increase inplasma flow, increase theVmaxfor LCFA uptake and oxidation. The data are consistent with the notion that uptake of LCFA in muscle may be mediated in part by a transport system.

  相似文献   

19.
Chloride in Soils and its Uptake and Movement within the Plant: A Review   总被引:21,自引:1,他引:21  
Natural inputs of chlorine (Cl) to soils come mainly from rainwater,sea spray, dust and air pollution. In addition, human practices,such as irrigation and fertilization, contribute significantlyto Cl deposition. In the soil solution, Cl occurs predominantlyas the chloride anion (Cl-). The Cl-anion does not form complexesreadily, and shows little affinity (or specificity) in its adsorptionto soil components. Thus, Cl-movement within the soil is largelydetermined by water flows. Chlorine is an essential micronutrientfor higher plants. It is present mainly as Cl-. Chloride isa major osmotically active solute in the vacuole and is involvedin both turgor- and osmoregulation. In the cytoplasm it mayregulate the activities of key enzymes. In addition, Cl-alsoacts as a counter anion, and Cl-fluxes are implicated in thestabilization of membrane potential, regulation of intracellularpH gradients and electrical excitability. Chloride enters plantsthrough the roots, and there is some concern over the uptakeof the long-lived radionuclide36Cl, which enters into the foodchain through plants. Chloride is thought to traverse the rootby a symplastic pathway, and Cl-fluxes across the plasma membraneand tonoplast of root cells have been estimated. These fluxesare regulated by the Cl-content of the root. Chloride is mobilewithin the plant. The Cl-concentrations of xylem and phloemsaps have been determined and Cl-fluxes through the xylem andphloem have been modelled. Measurements of transmembrane voltagesand Cl-activities in cellular compartments suggest (1) thatactive Cl-transport across the plasma membrane dominates Cl-influxto root cells at low Cl-concentrations in the soil solutionand that passive Cl-influx to root cells occurs under more salineconditions, and (2) that both active and passive Cl-transportoccurs at the tonoplast. Electrophysiological studies have demonstratedthe presence of an electrogenic Cl-/2H+symporter in the plasmamembrane of root-hair cells and Cl-channels mediating eitherCl-influx or Cl-efflux across the plasma membrane. Similarly,there is both biochemical and electrophysiological evidencethat Cl-channels mediate Cl-fluxes in either direction acrossthe tonoplast and that a Cl-/nH+antiport mediates Cl-influxto the vacuole. This article reviews the availability of Cl-inthe soil, the roles and distribution of Cl-within the plant,the magnitude of Cl-fluxes across membranes and between tissues,the mechanisms of Cl-transport across membranes and the electricalcharacteristics and molecular biology of Cl-channels. Copyright2001 Annals of Botany Company Review, Arabidopsis thaliana, channel, chloride (Cl-), influx, phloem, plasma membrane, radiochlorine (36Cl), soil, tonoplast, transport, uptake, xylem  相似文献   

20.
Patch-clamp recordings were used to study ioncurrents induced by cell swelling caused by hypotonicity in humanprostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl was the primarycharge carrier (termed ICl,swell). Theselectivity sequence of the underlying volume-regulated anion channels(VRACs) for different anions wasBrI > Cl > F > methanesulfonate glutamate, with relativepermeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currentsas well as single-channel currents showed moderate outwardrectification. Unitary VRAC conductance was determined at 9.6 ± 1.8 pS. Conventional Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (100 µM) and DIDS (100 µM) inhibited whole cell ICl,swell in a voltage-dependent manner, with the block decreasing from 39.6 ± 9.7% and 71.0 ± 11.0% at +50 mV to 26.2 ± 7.2% and14.5 ± 6.6% at 100 mV, respectively. Verapamil (50 µM), astandard Ca2+ antagonist and P-glycoprotein functioninhibitor, depressed the current by a maximum of 15%. Protein tyrosinekinase inhibitors downregulated ICl,swell(genistein with an IC50 of 2.6 µM and lavendustin A by60 ± 14% at 1 µM). The protein tyrosine phosphatase inhibitorsodium orthovanadate (500 µM) stimulatedICl,swell by 54 ± 11%. We conclude thatVRACs in human prostate cancer epithelial cells are modulated viaprotein tyrosine phosphorylation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号