首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nuclear mRNA precursors are spliced by a large macromolecular complex called the spliceosome which contains, in most eucaryotes, five small nuclear RNAs (snRNAs) each in the form of a small ribonucleoprotein particle (the U1, U2, U5, and U4/U6 snRNPs). Although secondary structures have been derived for all five spliceosomal snRNAs based on phylogenetic, biochemical, and genetic data, little tertiary structure information is available. Here we use the general cross-linking reagent nitrogen mustard [bis-(2-chloroethyl)methylamine] to detect tertiary interactions within U2 snRNA. After the cross-linking of deproteinized HeLa nuclear extract, two intramolecularly cross-linked U2 species with anomalous electrophoretic mobility can be detected (X-U2#1 and X-U2#2). The 3' and 5' boundaries of each cross-link were determined by rapid enzymatic RNA sequencing of end-labeled RNA. X-U2#1 is cross-linked between the region U41-U55 and G105 or G106, X-U2#2 between U53 and G97 or G98. We then tested the ability of the two cross-linked species to bind snRNP proteins in vitro (in nuclear extract or S100) and in vivo (in Xenopus oocytes). X-U2#2 reconstituted efficiently both in vitro and in vivo but X-U2#1 did not, as judged by immunoprecipitation with antibodies specific for Sm- and U2-specific proteins. Since the cross-link in X-U2#2 involves the Sm binding site but does not block snRNP assembly, our data strongly suggest that the Sm binding site lies on the surface of the native snRNP.  相似文献   

2.
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 participate in the splicing of pre-mRNA. U1, U2, U4 and U5 RNAs share a highly conserved sequence motif PuA(U)nGPu, termed the Sm site, which is normally flanked by two hairpin loops. The Sm site provides the major binding site for the group of common proteins, B', B, D1, D2, D3, E, F and G, which are shared by the spliceosomal snRNPs. We have investigated the ability of common snRNP proteins to recognize the Sm site of snRNA by using ultraviolet light-induced RNA-protein cross-linking within U1 snRNP particles. The U1 snRNP particles, reconstituted in vitro, contained U1 snRNA labelled with 32P. Cross-linking of protein to this U1 snRNA occurred only in the presence of the single-stranded stretch of snRNA that makes up the conserved Sm site. Characterization of the cross-linked protein by one and two-dimensional gel electrophoresis indicated that snRNP protein G had become cross-linked to the U1 snRNA. This was confirmed by specific immunoprecipitation of the cross-linked RNA-protein complex with an anti-G antiserum. The cross-link was located on the U1 snRNA by fingerprint analysis with RNases T1 and A; this demonstrated that the protein G has been cross-linked to the AAU stretch within the 5'-terminal half of the Sm site (AAUUUGUGG). These results suggest that the snRNP protein G may be involved in the direct recognition of the Sm site.  相似文献   

3.
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the U1 70-kDa (70K) protein in stem-loop I of U1 small nuclear RNA (snRNA) within purified U1 snRNPs and then confirmed the results by a large-scale preparation that allowed N-terminal sequencing and matrix-assisted laser desorption ionization mass spectrometry of purified cross-linked peptide-oligonucleotide complexes. We identified Tyr(112) and Leu(175) within the RNA-binding domain of the U1 70K protein to be cross-linked to G(28) and U(30) in stem-loop I, respectively. We further applied our immunoprecipitation approach to HeLa U5 snRNP, as part of purified 25 S U4/U6.U5 tri-snRNPs. Cross-linking sites between the U5-specific 220-kDa protein (human homologue of Prp8p) and the U5 snRNA were located at multiple nucleotides within the highly conserved loop 1 and at one site in internal loop 1 of U5 snRNA. The cross-linking of four adjacent nucleotides indicates an extended interaction surface between loop 1 and the 220-kDa protein. In summary, our approach provides a rapid method for identification of RNA-protein contact sites within native snRNP particles as well as other ribonucleoprotein particles.  相似文献   

4.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

5.
Protein-RNA cross-linking combined with mass spectrometry is a powerful tool to elucidate hitherto non-characterized protein-RNA contacts in ribonucleoprotein particles, as, for example, within spliceosomes. Here, we describe an improved methodology for the sequence analysis of purified peptide-RNA oligonucleotide cross-links that is based solely on MALDI-ToF mass spectrometry. The utility of this methodology is demonstrated on cross-links isolated from UV-irradiated spliceosomal particles; these were (1) [15.5K-61 K-U4 atac] small nuclear ribonucleoprotein (snRNP) particles prepared by reconstitution in vitro, and (2) U1 snRNP particles purified from HeLa cells. We show that the use of 2',4',6'-trihydroxyacetophenone (THAP) as MALDI matrix allows analysis of cross-linked peptide-RNA oligonucleotides in the reflectron mode at high resolution, enabling sufficient accuracy to assign unambiguously cross-linked RNA sequences. Most important, post-source decay (PSD) analysis under these conditions was successfully applied to obtain sequence information about the cross-linked peptide and RNA moieties within a single spectrum, including the identification of the actual cross-linking site. Thus, in U4 atac snRNA we identified His 270 in the spliceosomal U4/U6 snRNP-specific protein 61 K (hPrp31p) cross-linked to U 44; in the U1 snRNP we show that Leu175 of the U1 snRNP-specific 70K protein is cross-linked to U 30 of U1 snRNA. This type of analysis is applicable to any type of RNP complex and may be expected to pave the way for the further analysis of protein-RNA complexes in much lower abundance and/or of cross-links that are obtained in low yield.  相似文献   

6.
Most histone precursor mRNAs (pre-mRNAs) in metazoans are matured by 3'-end cleavage directed by the U7 small nuclear ribonucleoprotein (snRNP). RNA functional groups necessary for in vivo assembly and activity of the U7 snRNP were examined by nucleotide-analog interference mapping and mutagenesis using a chimeric mouse histone H4 pre-mRNA-U7 snRNA construct that is cleaved in cis in Xenopus laevis oocytes. Assembly of the unique U7 Sm protein core is rate limiting for processing in vivo and requires four conserved nucleotides within the U7 Sm-binding site, as well as the correct positioning and size of the U7 terminal stem-loop structure. To our surprise, pseudouridine substitution revealed a requirement for backbone flexibility at a particular position within the U7 Sm site, providing in vivo biochemical evidence that an unusual C2'-endo sugar conformation is necessary for assembly of the Sm ring.  相似文献   

7.
A Woppmann  J Rinke    R Lührmann 《Nucleic acids research》1988,16(23):10985-11004
Protein-RNA interactions in small nuclear ribonucleoproteins (UsnRNPs) from HeLa cells were investigated by irradiation of purified nucleoplasmic snRNPs U1 to U6 with UV light at 254 nm. The cross-linked proteins were analyzed on one- and two-dimensional gel electrophoresis systems, and the existence of a stable cross-linkage was demonstrated by isolating protein-oligonucleotide complexes from snRNPs containing 32P-labelled snRNAs after exhaustive digestion with a mixture of RNases of different specificities. The primary target of the UV-light induced cross-linking reaction between protein and RNA was protein F. It was also found to be cross-linked to U1 snRNA in purified U1 snRNPs. Protein F is known to be one of the common snRNP proteins, which together with D, E and G protect a 15-25 nucleotide long stretch of snRNAs U1, U2, U4 and U5, the so-called domain A or Sm binding site against nuclease digestion (Liautard et al., 1982). It is therefore likely that the core-protein may bind directly and specifically to the common snRNA domain A, or else to a sub-region of this. The second protein which was demonstrated to be cross-linked to snRNA was the U1 specific protein 70K. Since it has been shown that binding of protein 70K to U1 RNP requires the presence of the 5' stem and loop of U1 RNA (Hamm et al., 1987) it is likely that the 70K protein directly interacts with a sub-region of the first stem loop structure.  相似文献   

8.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

9.
10.
The in vivo distribution of snRNPs has been analysed by microinjecting fluorochrome-labelled antisense probes into the nuclei of live HeLa and 3T3 cells. Probes for U2 and U5 snRNAs specifically label the same discrete nuclear foci while a probe for U1 snRNA shows widespread nucleoplasmic labelling, excluding nucleoli, in addition to labelling foci. A probe for U3 snRNA specifically labels nucleoli. These in vivo data confirm that mammalian cells have nuclear foci which contain spliceosomal snRNPs. Co-localization studies, both in vivo and in situ, demonstrate that the spliceosomal snRNAs are present in the same nuclear foci. These foci are also stained by antibodies which recognize snRNP proteins, m3G-cap structures and the splicing factor U2AF but are not stained by anti-SC-35 or anti-La antibodies. U1 snRNP and the splicing factor U2AF closely co-localize in the nucleus, both before and after actinomycin D treatment, suggesting that they may both be part of the same complex in vivo.  相似文献   

11.
12.
We have studied the interaction of two of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins, U1-70K and U1-A, with U1 small nuclear RNA (snRNA). The U1-70K protein is a U1-specific RNA-binding protein. Deletion and mutation analyses of a beta-galactosidase/U1-70K partial fusion protein indicated that the central portion of the protein, including the RNP sequence domain, is both necessary and sufficient for specific U1 snRNA binding in vitro. The highly conserved eight-amino-acid RNP consensus sequence was found to be essential for binding. Deletion and mutation analyses of U1 snRNA showed that both the U1-70K fusion protein and the native HeLa U1-70K protein bound directly to loop I of U1 snRNA. Binding was sequence specific, requiring 8 of the 10 bases in the loop. The U1-A snRNP protein also interacted specifically with U1 snRNA, principally with stem-loop II.  相似文献   

13.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

14.
Monospecific antibodies directed against several U small nuclear ribonucleoprotein (U snRNP) particle proteins were affinity purified from a patient's anti-(U1,U2)RNP serum. These were used to demonstrate that: (i) proteins equivalent to the mammalian U2 snRNP-specific A' and B" proteins are present in Xenopus laevis oocytes; (ii) both proteins A' and B" have the same structural requirements for binding to U2 snRNA; (iii) proteins B, B' and D have the same structural requirement for binding to U2 snRNA; (iv) using very high specific activity RNA probes it is possible to detect a fraction of either U1 or U2 snRNA precipitable by antibodies directed against proteins specific for the other U snRNP, indicating an interaction between U1 and U2 snRNPs. The structural requirements of this interaction were studied for the U2 snRNP. All changes made to U2 snRNA or snRNP structure resulted in loss of the interaction with U1 snRNP.  相似文献   

15.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

16.
V A Raker  G Plessel    R Lührmann 《The EMBO journal》1996,15(9):2256-2269
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.  相似文献   

17.
In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing.   总被引:48,自引:10,他引:38       下载免费PDF全文
R Savino  S A Gerbi 《The EMBO journal》1990,9(7):2299-2308
DNA oligonucleotide complementary to sequences in the 5' third of U3 snRNA were injected into Xenopus oocyte nuclei to disrupt endogenous U3 snRNA. The effect of this treatment on rRNA processing was examined. We found that some toads have a single rRNA processing pathway, whereas in other toads, two rRNA processing pathways can coexist in a single oocyte. U3 snRNA disruption in toads with the single rRNA processing pathway caused a reduction in 20S and '32S' pre-rRNA. In addition, in toads with two rRNA processing pathways, an increase in '36S' pre-rRNA of the second pathway is observed. This is the first in vivo demonstration that U3 snRNA plays a role in rRNA processing. Cleavage site #3 is at the boundary of ITS 1 and 5.8S and links all of the affected rRNA intermediates: 20S and '32S' are the products of site #3 cleavage in the first pathway and '36S' is the substrate for cleavage at site #3 in the second pathway. We postulate that U3 snRNP folds pre-rRNA into a conformation dictating correct cleavage at processing site #3.  相似文献   

18.
Structural requirements for the function of a yeast chromosomal replicator   总被引:76,自引:0,他引:76  
S Kearsey 《Cell》1984,37(1):299-307
We have investigated the role of small nuclear ribonucleoprotein particles (snRNPs) in the in vitro splicing of messenger RNA precursors by a variety of procedures. Removal of the U-type snRNPs from the nuclear extracts of HeLa cells with protein A-Sepharose-coupled human autoimmune antibodies leads to complete loss of splicing activity. The inhibition of splicing can be prevented by saturating the coupled antibodies with purified nucleoplasmic U snRNPs prior to incubation with nuclear extract. We further demonstrate that an intact 5' terminus of U1 snRNA is required for the functioning of U1 snRNP in the splicing reaction. Antibodies directed against the trimethylated cap structure of the U snRNAs inhibit splicing. Upon removal of the first eight nucleotides of the U1 snRNA in the particles by site-directed hydrolysis with ribonuclease H in the presence of a synthetic complementary oligodeoxynucleotide splicing is completely abolished. These results are in strong support of current models suggesting that a base-pairing interaction between the 5' terminus of the U1 snRNA and the 5' splice site of a mRNA precursor is a prerequisite for proper splicing.  相似文献   

19.
A novel small nuclear ribonucleoprotein (snRNP) complex containing both U11 and U12 RNAs has been identified in HeLa cell extracts. This U11/U12 snRNP complex can be visualized on glycerol gradients, on native polyacrylamide gels, and by selection with antisense 2'-O-methyl oligoribonucleotides. RNase H-mediated degradation of the U12 snRNA confirmed a direct interaction between the U11 and U12 snRNPs. This snRNP complex is the first to be identified involving low-abundance snRNPs. Selection of the U11/U12 snRNP complex is sensitive to high salt, suggestive of a protein-mediated interaction. Secondary structure analyses revealed several regions of the U11 snRNP accessible for interaction with other RNAs or proteins but no detectable difference between the accessibility of these regions in the U11 monoparticle compared with the U11/U12 snRNP complex. There are also several accessible single-stranded regions in the U12 snRNP, and oligonucleotide-directed RNase H digestion identified nucleotides 28 to 36 of U12 as containing sequences required for the U11/U12 interaction. Both the U12 snRNP and the U11/U12 snRNP complex can be disrupted without altering the cleavage/polyadenylation activity of a nuclear extract.  相似文献   

20.
In vitro assembly of U1 snRNPs.   总被引:47,自引:10,他引:37       下载免费PDF全文
J Hamm  M Kazmaier    I W Mattaj 《The EMBO journal》1987,6(11):3479-3485
An efficient system for the in vitro assembly of U1 snRNPs is described. RNA-protein interactions in a series of U1 snRNA mutants assembled both in vivo and in vitro were studied in order to verify the accuracy of the system. Two discrete protein binding sites are defined by immunoprecipitation with antibodies against different protein components of the U1 snRNP and a newly developed protein sequestering assay. The U1 snRNP-specific proteins 70K and A require only the 5'-most stem-loop structure of U1 snRNA for binding, the common U snRNP proteins require the conserved Sm binding site (AUnG). Interactions between these two groups of proteins are detected. These results are combined to derive a model of the U1 snRNP structure. The potential use of the in vitro system in the functional analysis of U1 snRNP proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号