首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of an acute intravenous infusion of ammonium acetate on rat cerebral glutamate and glutamine concentrations, energy metabolism, and intracellular pH were measured in vivo with 1H and 31P nuclear magnetic resonance (NMR). The level of blood ammonia maintained by the infusion protocol used in this study (approximately 500 microM, arterial blood) did not cause significant changes in arterial PCO2, PO2, or pH. Cerebral glutamate levels fell to at least 80% of the preinfusion value, whereas glutamine concentrations increased 170% relative to the preinfusion controls. The fall in brain glutamate concentrations followed a time course similar to that of the rise of brain glutamine. There were no detectable changes in the content of phosphocreatine (PCr) or nucleoside triphosphates (NTP), within the brain regions contributing to the sensitive volume of the surface coil, during the ammonia infusion. Intracellular pH, estimated from the chemical shift of the inorganic phosphate resonance relative to the resonance of PCr in the 31P spectrum, was also unchanged during the period of hyperammonemia. 1H spectra, specifically edited to allow quantitation of the brain lactate content, indicated that lactate rose steadily during the ammonia infusion. Detectable increases in brain lactate levels were observed approximately 10 min after the start of the ammonia infusion and by 50 min of infusion had more than doubled. Spectra acquired from rats that received a control infusion of sodium acetate were not different from the spectra acquired prior to the infusion of either ammonium or sodium acetate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Metabolic alterations in amino acids, high-energy phosphates, and intracellular pH during and after insulin hypoglycemia in the rat brain was studied in vivo by 1H and 31P nuclear magnetic resonance (NMR) spectroscopy. Sequential accumulations of 1H and 31P spectra were obtained from a double-tuned surface coil positioned over the exposed skull of a rat while the electroencephalogram was recorded continuously. The transition to EEG silence was accompanied by rapid declines in phosphocreatine, nucleoside triphosphate, and an increase in inorganic orthophosphate in 31P spectra. In 1H spectra acquired during the same time interval, the resonances of glutamate and glutamine decreased in intensity while a progressive increase in aspartate was observed. Following glucose administration, glutamate and aspartate returned to control levels (recovery half-time, 8 min); recovery of glutamine was incomplete. An increase in lactate was detected in the 1H spectrum during recovery but it was not associated with any change in the intracellular pH as assessed in the corresponding 31P spectrum. Phosphocreatine returned to control levels following glucose administration, in contrast to nucleoside triphosphate and inorganic orthophosphate which recovered to only 80% and 200% of their control levels, respectively. These results show that the changes in cerebral amino acids and high-energy phosphates detected by alternating the collection of 1H and 31P spectra allow for a detailed assessment of the metabolic response of the hypoglycemic brain in vivo.  相似文献   

3.
In vivo 15N and 14N nuclear magnetic resonance spectroscopy was used to investigate the assimilation of nitrate and ammonium in seedlings of Norway spruce (Picea abies [L.] Karst.). The main objective was to study accumulation of free NH+4 and examine to what extent the nitrogen source affects the composition of the free amino acid pools in roots, stems and needles. NH+4 concentrations in plants growing in the presence of 0.5–50 mM ammonium were quantified using 14N NMR. The NH+4 values in tissues ranged from 6 to 46 μmol (g fresh weight)?1. with highest concentrations in roots and needles. The tissue NH+4 peaked at 5.0 mM NH+4 in the medium. and failed to increase when NH+4 in the medium was increased to 50 mM, indicating metabolic control of the concentration of this cation in tissues. The 14N NMR spectra were used to estimate pH of the NH+4 storage pools. Based on the pH sensitivity of the quintet of 14NH+4 resonance, we suggest that the pH of the ammonium storage compartments in the roots and stems should be 3.7–3.8, and in needles 3.4–3.5, representing extremely low pH values of the tissue. 15N from nitrate or ammonium was first incorporated into the amide group of glutamine and then into α-amino groups, confirming that the glutamine synthetase/ glutamate synthase cycle is the major route of nitrogen assimilation into amino acids and thus plays a role in lowering the levels of NH+4 in the cytoplasm. NH+4 can also be assimilated in roots in plants growing in darkness. The main 15N-labelled amino acids were glutamine. arginine and alanine. Almost no 15N signals from needles were observed. Double labelling (δN + w, wN) of arginine is consistent with the operation of the ornithine cycle, and enrichment indicates that this cycle is a major sink of newly assimilated nitrogen. Nitrogen assimilation in roots in the presence of added methionine sulphoximine and glutamate indicated the catabolic action of glutamate dehydrogenase. The 15N NMR spectra of plants grown on 15N-urea showed a marked increase in the labelling of ammonium and glutamine. indicating high urease activity. Amino acids were also quantified using high pressure liquid chromatography. Arginine was found to be an important transport form of nitrogen in the stem.  相似文献   

4.
Application of both phosphorus (31P) and proton (1H) magnetic resonance spectroscopy (MRS) to the study of brain metabolism permits the noninvasive measurement of intracellular pH and brain lactate level. We have used water-suppression 1H MRS with novel lactate-editing techniques, together with 31P MRS, to characterize sequential changes in brain lactate level and pH in vivo over an 8-h period following fluid-percussion brain injury of graded severity in the rat. A transient fall in intracellular pH (from 7.09 +/- 0.07 at baseline to 6.88 +/- 0.09 at 40 min postinjury) occurred in animals subjected to moderate- (1.5-2.2 atm) and high- (2.5-3.3 atm) but not low-level (0.1-1.2 atm) injury; intracellular pH returned to baseline by 90 min postinjury. Transient elevations in brain lactate level were observed that temporally paralleled and were significantly correlated with the pH changes for all injury levels (r = 0.93, p less than 0.001). Postinjury alterations in intracellular brain pH and lactate level were identical in magnitude in animals subjected to either moderate or high-level injury. However, animals subjected to moderate injury had a moderate chronic neurological deficit that persisted up to 4 weeks postinjury, whereas animals subjected to a high level of injury showed greater histopathological damage and a more severe chronic neurological deficit. These data suggest that the extent of posttraumatic intracellular cerebral acidosis in our model of experimental head injury is not directly related to the severity of functional neurological deficit.  相似文献   

5.
1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed.  相似文献   

6.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

7.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

8.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

9.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

10.
Cerebral acidosis occurring during ischemia has been proposed as one determinant of tissue damage. Newborn animals appear to be less susceptible to ischemic tissue damage than adults. One possible component of ischemic tolerance could derive from maturational differences in the extent of acid production and buffering in newborns compared to adults. The purpose of this study was to measure the dependency of acid production on the blood plasma glucose concentrations and acid buffering capacity of piglets at different stages of development. Complete ischemia was induced in 29 piglets ranging in postconceptual age from 111 to 156 days (normal term conception, 115 days). Brain buffering capacity during the first 30 min of ischemia was quantified in vivo, via 31P and 1H nuclear magnetic resonance (NMR) spectroscopy, by measuring the change in intracellular brain pH for a given change in the concentration of compounds that contribute to the production of hydrogen ions. Animals from all four age groups showed a similar linear correlation between preischemia blood glucose concentration and intracellular pH after 30 min of ischemia. For each animal the slope of the plot of intracellular pH versus cerebral buffer base deficit was used to calculate the buffer capacity. Using data obtained over the entire 30 min of ischemia, there was no difference in the mean buffer capacity of the different age groups, nor was there a significant correlation between buffer capacity and age. However, there was a significant increase in buffer capacity for the intracellular pH range 6.6-6.0, compared to 7.0-6.6, for all age groups. No significant differences in buffer capacity for these two pH ranges were observed between any of the age groups. Acid buffering capacity was also measured by performing pH titrations on brain tissue homogenized in the presence of inhibitors of glycolysis and creatine kinase. Plots of homogenate pH versus buffer base deficit showed a nonlinear trend similar to that seen in vivo, indicating an increase in buffer capacity as intracellular pH decreases. A comparison of newborn and 1-month-old brain tissue frozen under control conditions or after 45 min of ischemia revealed no differences that could be attributed to age and a slight decrease in buffer capacity of ischemic brain compared to control brain tissue homogenates. There was no difference between the brain buffering capacity measured in vivo using 31P and 1H NMR and that measured in vitro using brain homogenates.  相似文献   

11.
Abstract: The present study determined the metabolic fate of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain and also in cultures incubated in the presence of 1 or 5 mMα-ketoisocaproate (α-KIC). When astrocytes were incubated with 0.2 mM [U-13C]glutamate, 64.1% of the 13C metabolized was converted to glutamine, and the remainder was metabolized via the tricarboxylic acid (TCA) cycle. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. In control astrocytes, 8.0% of the [13C]glutamate metabolized was incorporated into intracellular aspartate, and 17.2% was incorporated into lactate that was released into the medium. In contrast, there was no detectable incorporation of [13C]glutamate into aspartate in astrocytes incubated in the presence of α-KIC. In addition, the intracellular aspartate concentration was decreased 50% in these cells. However, there was increased incorporation of [13C]glutamate into the 1,2,3-13C3-isotopomer of lactate in cells incubated in the presence of α-KIC versus controls, with formation of lactate accounting for 34.8% of the glutamate metabolized in astrocytes incubated in the presence of α-KIC. Altogether more of the [13C]glutamate was metabolized via the TCA cycle, and less was converted to glutamine in astrocytes incubated in the presence of α-KIC than in control cells. Overall, the results demonstrate that the presence of α-KIC profoundly influences the metabolic disposition of glutamate by astrocytes and leads to altered concentrations of other metabolites, including aspartate, lactate, and leucine. The decrease in formation of aspartate from glutamate and in total concentration of aspartate may impair the activity of the malate-aspartate shuttle and the ability of astrocytes to transfer reducing equivalents into the mitochondria and thus compromise overall energy metabolism in astrocytes.  相似文献   

12.
The purpose of this study was to explore the interrelations among energy turnover, the selection of fuels, and the production of ammonium (NH4+) in the kidney during chronic metabolic acidosis. Experiments were carried out in dogs because of the extensive background literature in this species. The specific question addressed was, will a diminished rate of oxidation of fatty acids in the kidney permit the rate of extraction of glutamine and the production of NH4+ to rise? Chronic metabolic acidosis was induced by the ingestion of NH4Cl for 5 days to stimulate the rate of production of NH4+. Insulin was administered to diminish the delivery of fatty acids to the kidney. The concentration of fatty acids in plasma fell from 350 +/- 104 to 188 +/- 45 microM, yet there was no significant increase in the rates of production of NH4+, consumption of oxygen, or extraction of glutamine after insulin. Notwithstanding, there was a significant rise in the rate of extraction of lactate by the kidney when expressed per 100-mL glomerular filtration rate. Because there was a significant decline in the level of glutamine in plasma (512 +/- 76 to 359 +/- 42 microM) 1 h after giving insulin, a second series of experiments was carried out. When glutamine was infused after the insulin period, there was no longer a fall in the concentration of this metabolite. Notwithstanding, the rates of extraction of glutamine and production of NH4+ were not higher in the presence of insulin. These data suggest that the rate of oxidation of fatty acids did not limit the rate of oxidation of glutamine in the kidneys of fed dogs with chronic metabolic acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
NH4(+)-transport in Anabaena 7120 was studied using the NH4+ analogue, 14CH3NH3+. At pH 7, two energy-dependent NH4(+)-transport systems were detected in both N2- and NO3(-)-grown cells, but none in NH4(+)-grown cells. Both transport systems showed a low and a high affinity mode of operation depending on the substrate concentration. One of the transport systems showed Km values of 8 microM (Vmax = 1 nmole min-1mg-1protein) and 80 microM (Vmax = 7 nmole min-1mg-1protein), and was insensitive to L-methionine-DL-sulphoximine, a glutamate analogue and irreversible inhibitor of glutamine synthetase. The other transport system showed Km values of 2.5 microM (Vmax = 0.1 nmole min-1mg-1protein) and 70 microM (Vmax = 0.7 nmole min-1mg-1protein), and was sensitive to L-methionine-DL-sulphoximine. Intracellular accumulation of free 14CH3NH3+ showed a biphasic pattern in response to variation in external 14CH3NH3+ concentrations. A maximum intracellular concentration of 2.5 mM and 7.5 mM was reached in the external 14CH3NH3+ concentration range of 1-50 microM and 1-500 microM, respectively. At pH 9, an energy-independent diffusion of 14CH3NH2 leading to a higher intracellular accumulation and assimilation rate, than that at pH 7, was observed.  相似文献   

14.
The purpose of this study was to investigate neonatal brain energy metabolism, acid, and lactate homeostasis in the period immediately following partial ischemia. Changes in brain buffering capacity were quantified by measuring mean intracellular brain pH, calculated from the chemical shift of Pi, in response to identical episodes of hypercarbia before and after ischemia. In addition, the relationship between brain buffer base deficit and intracellular pH was compared during and following ischemia. Thus, in vivo 31P and 1H nuclear magnetic resonance spectra were obtained from the brains of seven newborn piglets exposed to sequential episodes of hypercarbia, partial ischemia, and a second episode of hypercarbia in the postischemic recovery period. For the first episode of hypercarbia, brain buffering was similar to values reported for adult animals of other species (percentage pH regulation = 54 ± 16%). During ischemia, the brain base deficit per unit change in pH was ?19 ± 5 mM/pH unit, which is similar to values reported for adult rats. By 20–35 min postischemia, brain acidosis partly resolved in spite of a net increase in lactate concentration. Therefore, the consumption of lactate could not explain acid homeostasis in the first 35 min following ischemia. We conclude that H+/HCO-3 or other proton equivalent translocation mechanisms must be sufficiently developed in piglet brain to support acid regulation. This is surprising, because a substantial body of evidence implies these processes would be less active in immature brain. The second episode of hypercarbia, from 35 to 65 min postischemia, resulted in a smaller decrease in brain pH compared with the first episode, a result indicating an increase in brain buffering capacity (percentage pH regulation = 79 ± 29%). This was associated with a parallel decrease in brain lactate content, and therefore acid regulation could be attributed to either continued ion translocation or the consumption of lactate. A mild decrease in brain pH and content of energy metabolites was observed, a finding suggesting that the metabolic consequences of severe postischemic hypercarbia are neither particularly dangerous or beneficial.  相似文献   

15.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

16.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   

17.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts.  相似文献   

18.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   

19.
Abstract: Previously we have shown that hypercarbia produces a larger decrease in agonal glycolytic rate in 1-month-old swine than in newborns. In an effort to understand the mechanism responsible for this difference, we tested the hypothesis that hypercarbia produces age-related changes in the concentration of one or more effectors of phosphofructokinase activity. Specifically, in vivo 31P and 1H NMR spectroscopy was used to compare changes in lactate levels, intracellular pH, free magnesium concentration, and content of phosphorylated metabolites for these two age groups at three intervals during the first 1.5 min of complete ischemia in the presence or absence of hypercarbia (Paco 2 = 102–106 mm Hg). Hypercarbia produced the same drop in intracellular brain pH for both age groups, but the decrease in phosphocreatine level and increase in inorganic phosphate content were greater in 1-month-olds compared with newborns. During ischemia there was no difference between the magnitude of change in intracellular pH and levels of phosphocreatine and inorganic phosphate in hypercarbic 1-month-olds versus newborns. Under control conditions, i.e., normocarbia and normoxia, the free Mg2+ concentration was lower and the fraction of magnesium-free ATP was higher for newborns than 1-month-olds. However, there was no change in these variables for either age group during hypercarbia and early during ischemia. Thus, age-related differences in the relative decrease in agonal glycolytic rate during hypercarbia could not be explained by differences in intracellular pH, inorganic phosphate content, or free magnesium concentration. The [ADP]free at control was higher in newborns compared with 1-month-olds, and there was no age-related difference in [AMP]free. These variables did not change for newborns when exposed to hypercarbia, but for 1-month-olds [ADP]free and [AMP]free increased during hypercarbia relative to control values. High-energy phosphate utilization during ischemia for hypercarbic 1-month-olds was reduced by 74% compared with normocarbic 1-month-olds during ischemia, whereas the reduction in energy utilization (14%) was not significant for hypercarbic versus normocarbic newborns during ischemia. Because hypercarbia reduces the rate of ATP depletion during ischemia in 1-month-olds to a greater extent than in newborns, the increase in [ADP]free and [AMP]free will be slower in the former age group. It follows therefore that for 1-month-olds, the agonal glycolytic rate would not be accelerated by ADP and AMP to the same degree during hypercarbia plus ischemia compared with normocarbic plus ischemia, whereas for newborns hypercarbia has relatively little impact on agonal glycolytic rate.  相似文献   

20.
The compartmentation of amino acid metabolism is an active and important area of brain research. 13C labeling and 13C nuclear magnetic resonance (NMR) are powerful tools for studying metabolic pathways, because information about the metabolic histories of metabolites can be determined from the appearance and position of the label in products. We have used 13C labeling and 13C NMR in order to investigate the metabolic history of gamma-aminobutyric acid (GABA) and glutamate in rat brain. [1-13C]Glucose was infused into anesthetized rats and the 13C labeling patterns in GABA and glutamate examined in brain tissue extracts obtained at various times after infusion of the label. Five minutes after infusion, most of the 13C label in glutamate appeared at the C4 position; at later times, label was also present at C2 and C3. This 13C labeling pattern occurs when [1-13C]glucose is metabolized to pyruvate by glycolysis and enters the pool of tricarboxylic acid (TCA) intermediates via pyruvate dehydrogenase. The label exchanges into glutamate from the TCA cycle pool through glutamate transaminases or dehydrogenase. After 30 min of infusion, approximately 10% of the total 13C in brain extracts appeared in GABA, primarily (greater than 80%) at the amino carbon (C4), indicating that the GABA detected is labeled through pyruvate carboxylase. The different labeling patterns observed for glutamate and GABA show that the large detectable glutamate pool does not serve as the precursor to GABA. Our NMR data support previous experiments suggesting compartmentation of metabolism in brain, and further demonstrate that GABA is formed from a pool of TCA cycle intermediates derived from an anaplerotic pathway involving pyruvate carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号