首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Macrophages facilitate clearance of cholesterol from the body via reverse cholesterol transport (RCT). The first event in RCT is internalization of modified low density lipoprotein by macrophages, upon which PPARγ1 and LXRα signaling pathways are turned on, leading to the transactivation of a cascade of genes (e.g. ABCA1 and ABCG1), whose products promote macrophage cholesterol efflux. Down-regulation of macrophage cholesterol efflux mediators leads to an imbalance in cholesterol homeostasis, promoting foam cell formation. Lipopolysaccharide (LPS) has been shown to suppress PPARγ1 and its downstream target genes in macrophages, inducing foam cell formation; a key mechanism proposed to underlie bacterial infection-induced atherosclerosis. Herein, we show that adipocyte enhancer-binding protein 1 (AEBP1) is up-regulated during monocyte differentiation. Moreover, we provide experimental evidence suggesting that AEBP1 expression is induced by LPS, and that LPS-induced down-regulation of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, is largely mediated by AEBP1. Although AEBP1-independent pathways seem to contribute to these LPS effects, such pathways can only mediate lesser and delayed effects of LPS on macrophage cholesterol efflux and development of foam cells. We speculate that AEBP1 may serve as a potential therapeutic target for the prevention/treatment of bacterial infection-induced atherosclerosis.  相似文献   

4.
5.
6.
7.
8.
9.
In the human neuroblastoma cell line IMR32 the N-myc gene happens to be amplified and actively expressed, whereas no stable c-myc RNA can be detected in the same cells. In this report, we show that in IMR32 cells the expression of the N-myc gene is repressed by introduction of a c-myc expression vector (c-myc cDNA conjugated with an SR promoter). Moreover, dose response experiments showed that the amount of endogenous c-myc protein present in HeLa cells (which express c-myc but not N-myc) is enough to repress the expression of N-myc in IMR32 cells.  相似文献   

10.
11.
12.
13.
14.
15.
16.
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.  相似文献   

17.
18.
Cyclic AMP (cAMP) content and the expression of cAMP-dependent phenotypes were positively correlated with respiration capacity in respiration-deficient mutants of Escherichia coli K-12 ("reductive repression," R. Hertz, and J. Bar-Tana, (1982) Arch. Biochem. Biophys. 213, 193-199). Reductive repression in respiration-deficient mutants could not be accounted for by respective changes in either the energy charge of adenine nucleotides or the redox state of pyridine nucleotides but could be ascribed to an increased formation of oxygen radicals under conditions of limited respiration. Scavengers of superoxide radicals eliminated reductive repression in respiration-deficient mutants with a concomitant increase in cAMP content. Such scavengers also effected a partial escape from permanent glucose catabolite repression, thus indicating a possible role played by oxygen radicals in both repression modes.  相似文献   

19.
In previous studies we have shown that all-trans retinoic acid (atRA)-treatment of the atRA-sensitive ovarian carcinoma cell line CA-OV3 repressed AP-1 activity by about 50%, while a similar effect was not observed in the atRA-resistant ovarian carcinoma cell line, SK-OV3. These results suggested that the repression of AP-1 activity may be one of the mechanisms by which atRA inhibits the growth of atRA-sensitive CA-OV3 cells. In the present studies, we investigated further the molecular mechanism by which AP-1 activity is repressed by atRA. We show that the repression of AP-1 activity correlates with an increase in JunB protein expression and a decrease in N-terminal phosphorylation of c-Jun. The decrease in N-terminal phosphorylation of c-Jun does not appear to be modulated by JNK or ERK, since their protein expression patterns and kinase activity do not correlate with the repression of AP-1 activity following treatment with atRA. However, the activity of the protein phosphatase PP2A was found to increase 24 h following atRA treatment in CA-OV3 cells. Moreover, the catalytic subunit of PP2A was found to associate with c-Jun in vivo following atRA treatment. Since the inhibition of AP-1 activity following atRA treatment of CA-OV3 cells was abolished in the presence of specific PP2A inhibitors, it is likely that PP2A plays an important role in the atRA-induced repression of AP-1.  相似文献   

20.
c-myc gene expression in human cells is controlled by glucose   总被引:1,自引:0,他引:1  
The c-myc oncogene is implicated in normal growth and differentiation processes. Human cell lines IM9 and HepG2 stably cultured at "low" glucose concentrations (5.5 mM) show c-myc mRNA levels 3-4 times higher than cells cultured at "high" glucose concentrations (25 nM). D-fructose (a metabolizable exose) substitutes for D-glucose in reducing c-myc expression while 3-ortho-methylglucose (a non metabolizable exose) is uneffective. c-myc expression is up-regulated (by PMA) or down-regulated (by dexamethasone and long-term exposure to FCS) in human cells cultured at "low" glucose but not in cells cultured at "high" glucose. We previously demonstrated that insulin receptor gene expression in human cell lines in enhanced by glucose. Therefore, glucose controls in an opposite way the expression of two genes important in the regulation of eukaryotic cell growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号