首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

2.
3.
We have identified a human Rho protein, RhoE, which has unusual structural and biochemical properties that suggest a novel mechanism of regulation. Within a region that is highly conserved among small GTPases, RhoE contains amino acid differences specifically at three positions that confer oncogenicity to Ras (12, 59, and 61). As predicted by these substitutions, which impair GTP hydrolysis in Ras, RhoE binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins. Replacing all three positions in RhoE with conventional amino acids completely restores GTPase activity. In vivo, RhoE is found exclusively in the GTP-bound form, suggesting that unlike previously characterized small GTPases, RhoE may be normally maintained in an activated state. Thus, amino acid changes in Ras that are selected during tumorigenesis have evolved naturally in this Rho protein and have similar consequences for catalytic function. All previously described Rho family proteins are modified by geranylgeranylation, a lipid attachment required for proper membrane localization. In contrast, the carboxy-terminal sequence of RhoE predicts that, like Ras proteins, RhoE is normally farnesylated. Indeed, we have found that RhoE in farnesylated in vivo and that this modification is required for association with the plasma membrane and with an unidentified cellular structure that may play a role in adhesion. Thus, two unusual structural features of this novel Rho protein suggest a striking evolutionary divergence from the Rho family of GTPases.  相似文献   

4.
Alpha and betaPIX belong to the group of guanine nucleotide exchange factors (GEFs) that mediate activation of members of the Rho GTPase family, in particular Rac1 and Cdc42, by stimulating the exchange of GDP for GTP. Rho family proteins are well known as regulators of the actin cytoskeleton and have been implicated in the formation of various types of focal adhesion structures. However, the function of GEF proteins during focal adhesion formation is only beginning to emerge. Here, we highlight the recent findings on alpha and betaPIX and their involvement in integrin-dependent signaling and suggest models for the role of PIX proteins during focal adhesion turnover.  相似文献   

5.
6.
To investigate mechanisms that underlie different modes of tumor cell movement we have studied how regulation of the activity of the Rho family GTPases determines the mode of tumor cell movement. Guanine nucleotide exchange factors (GEFs) and GTPase accelerating proteins (GAPs) are key regulators of the activity of small GTPases with GEFs promoting activation to the GTP bound state and GAPs promoting inactivation by stimulating GTP hydrolysis. We identified two important signaling pathways regulating amoeboid and mesenchymal types of motility in melanoma. Here, we discuss our findings in the context of how specificity of Rho signaling is achieved by GEFs and GAPs.  相似文献   

7.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

8.
pebble (pbl) is required for cytokinesis during postblastoderm mitoses (Hime, G., Saint, R., 1992. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development 114, 165–171; Lehner, C.F., 1992. The pebble gene is required for cytokinesis in Drosophila. J. Cell Sci. 103, 1021–1030) and encodes a putative guanine nucleotide exchange factor (RhoGEF) for Rho1 GTPase (Prokopenko, S.N., Brumby, A., O'Keefe, L., Prior, L., He, Y., Saint, R., Bellen, H.J., 1999. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 13, 2301–2314). Mutations in pbl result in the absence of a contractile ring leading to a failure of cytokinesis and formation of polyploid multinucleate cells. Analysis of the subcellular distribution of PBL demonstrated that during mitosis, PBL accumulates at the cleavage furrow at the anaphase to telophase transition when assembly of a contractile ring is initiated (Prokopenko, S.N., Brumby, A., O'Keefe, L., Prior, L., He, Y., Saint, R., Bellen, H.J., 1999. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 13, 2301–2314). In addition, levels of PBL protein cycle during each round of cell division with the highest levels of PBL found in telophase and interphase nuclei. Here, we report the expression pattern of pbl during embryonic development. We show that PEBBLE RNA and PBL protein have a similar tissue distribution and are expressed in a highly dynamic pattern throughout embryogenesis. We show that PBL is strongly enriched in dividing nuclei in syncytial embryos and in pole cells as well as in nuclei of dividing cells in postblastoderm embryos. Our expression data correlate well with the phenotypes observed in pole cells and, particularly, with the absence of cytokinesis after cellular blastoderm formation in pbl mutants.  相似文献   

9.
Ran is one of the most abundant and best conserved of the small GTP binding and hydrolyzing proteins of eukaryotes. It is located predominantly in cell nuclei. Ran is a member of the Ras family of GTPases, which includes the Ras and Ras-like proteins that regulate cell growth and division, the Rho and Rac proteins that regulate cytoskeletal organization and the Rab proteins that regulate vesicular sorting. Ran differs most obviously from other members of the Ras family in both its nuclear localization, and its lack of sites required for post-translational lipid modification. Ran is, however, similar to other Ras family members in requiring a specific guanine nucleotide exchange factor (GEF) and a specific GTPase activating protein (GAP) as stimulators of overall GTPase activity. In this review, the multiple cellular functions of Ran are evaluated with respect to its known biochemistry and molecular interactions.  相似文献   

10.
Rho GTPases regulate fundamental processes including cell morphology and migration in various organisms. Guanine nucleotide exchange factor (GEF) has a crucial role in activating small GTPase by exchange GDP for GTP. In fission yeast Schizosaccharomyces pombe, six members of the Rho small GTPase family were identified and reported to be involved in cell morphology and polarized cell growth. We identified seven genes encoding Rho GEF domain from genome sequence and analyzed. Overexpressions of identified genes in cell lead to change of morphology, suggesting that all of them are involved in the regulation of cell morphology. Although all of null mutants were viable, two of seven null cells had morphology defects and five of seven displayed altered actin cytoskeleton arrangements. Most of the double mutants were viable and biochemical analysis revealed that each of GEFs bound to several small G proteins. These data suggest that identified Rho GEFs are involved in the regulation of cell morphology and share signals via small GTPase Rho family.  相似文献   

11.
Rho GTPases act as key regulators of cellular biochemistry by determining the timing, direction, and amplitude of signal transduction in a number of important pathways. The rate of activation of a GTPase-controlled reaction is limited by the rate of GTP binding to the Rho protein, and this, in turn, depends on the rate that GDP dissociates from the GTPase. The latter is controlled by the action of guanine nucleotide exchange factors (GEFs) that catalyze GDP-GTP exchange by increasing the rate of GDP dissociation. Here, the recently reported structural information for Rho GTPase-GEF complexes and the molecular basis for the specificity of their interactions are discussed. Underscoring the importance of regulating the Rho GTPase activation pathway, genetically unrelated proteins have evolved which complement or mimic the Dbl homology-Pleckstrin homology (DH-PH) domain-containing family of proteins in their ability to catalyze GDP-GTP exchange. In particular, the structure of the mammalian Cdc42 protein bound to the SopE protein from Salmonella typhimurium illustrates how two unrelated protein folds are able to carry out guanine nucleotide exchange by a remarkably similar mechanism. It will be interesting to see if this conservation of mechanism extends to a newly recognized class of GEFs related to the DOCK180 family.  相似文献   

12.
Controlling the switches: Rho GTPase regulation during animal cell mitosis   总被引:1,自引:0,他引:1  
《Cellular signalling》2014,26(12):2998-3006
Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule–kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.  相似文献   

13.
The biological impact of Rho depends critically on the precise subcellular localization of its active, GTP-loaded form. This can potentially be determined by the balance between molecules that promote nucleotide exchange or GTP hydrolysis. However, how these activities may be coordinated is poorly understood. We now report a molecular pathway that achieves exactly this coordination at the epithelial zonula adherens. We identify an extramitotic activity of the centralspindlin complex, better understood as a cytokinetic regulator, which localizes to the interphase zonula adherens by interacting with the cadherin-associated protein, α-catenin. Centralspindlin recruits the RhoGEF, ECT2, to activate Rho and support junctional integrity through myosin IIA. Centralspindlin also inhibits the junctional localization of p190 B RhoGAP, which can inactivate Rho. Thus, a conserved molecular ensemble that governs Rho activation during cytokinesis is used in interphase cells to control the Rho GTPase cycle at the zonula adherens.  相似文献   

14.
The Rho small GTPase: functions in health and disease   总被引:2,自引:0,他引:2  
  相似文献   

15.
Pseudomonas aeruginosa exoenzyme S (ExoS) is a bifunctional cytotoxin. The ADP-ribosyltransferase domain is located within the C terminus part of ExoS. Recent studies showed that the N terminus part of ExoS (amino acid residues 1-234, ExoS(1-234)), which does not possess ADP-ribosyltransferase activity, stimulates cell rounding when transfected or microinjected into eukaryotic cells. Here we studied the effects of ExoS(1-234) on nucleotide binding and hydrolysis by Rho GTPases. ExoS(1-234) (100-500 nM) did not influence nucleotide exchange of Rho, Rac, and Cdc42 but increased GTP hydrolysis. A similar increase in GTPase activity was stimulated by full-length ExoS. Half-maximal stimulation of GTP hydrolysis by Rho, Rac, and Cdc42 was observed at 10-11 nM ExoS(1-234), respectively. We identified arginine 146 of ExoS to be essential for the stimulation of GTPase activity of Rho proteins. These data identify ExoS as a GTPase-activating protein for Rho GTPases.  相似文献   

16.
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.  相似文献   

17.
The Ras guanine-nucleotide exchange factor Ras-GRF/Cdc25(Mn) harbors a complex array of structural motifs that include a Dbl-homology (DH) domain, usually found in proteins that interact functionally with the Rho family GTPases, and the role of which is not yet fully understood. Here, we present evidence that Ras-GRF requires its DH domain to translocate to the membrane, to stimulate exchange on Ras, and to activate mitogen-activated protein kinase (MAPK). In an unprecedented fashion, we have found that these processes are regulated by the Rho family GTPase Cdc42. We show that GDP- but not GTP-bound Cdc42 prevents Ras-GRF recruitment to the membrane and activation of Ras/MAPK, although no direct association of Ras-GRF with Cdc42 was detected. We also demonstrate that catalyzing GDP/GTP exchange on Cdc42 facilitates Ras-GRF-induced MAPK activation. Moreover, we show that the potentiating effect of ionomycin on Ras-GRF-mediated MAPK stimulation is also regulated by Cdc42. These results provide the first evidence for the involvement of a Rho family G protein in the control of the activity of a Ras exchange factor.  相似文献   

18.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

19.
Rho and Arf family small GTPases are well-known regulators of cellular actin dynamics. We recently identified ARAP3, a member of the ARAP family of dual GTPase activating proteins (GAPs) for Arf and Rho family GTPases, in a screen for PtdIns(3,4,5)P(3) binding proteins. PtdIns(3,4,5)P(3) is the lipid product of class I phosphoinositide 3OH-kinases (PI3Ks) and is a signaling molecule used by growth factor receptors and integrins in the regulation of cell dynamics. We report here that as a Rho GAP, ARAP3 prefers RhoA as a substrate and that it can be activated in vitro by the direct binding of Rap proteins to a neighbouring Ras binding domain (RBD). This activation by Rap is GTP dependent and specific for Rap versus other Ras family members. We found no evidence for direct regulation of ARAP3's Rho GAP activity by PtdIns(3,4,5)P(3) in vitro, but PI3K activity was required for activation by Rap in a cellular context, suggesting that PtdIns(3,4,5)P(3)-dependent translocation of ARAP3 to the plasma membrane may be required for further activation by Rap. Our results indicate that ARAP3 is a Rap-effector that plays an important role in mediating PI3K-dependent crosstalk between Ras, Rho, and Arf family small GTPases.  相似文献   

20.
Rho and Rac take center stage   总被引:85,自引:0,他引:85  
Burridge K  Wennerberg K 《Cell》2004,116(2):167-179
Many features of cell behavior are regulated by Rho family GTPases, but the most profound effects of these proteins are on the actin cytoskeleton and it was these that first drew attention to this family of signaling proteins. Focusing on Rho and Rac, we will discuss how their effectors regulate the actin cytoskeleton. We will describe how the activity of Rho proteins is regulated downstream from growth factor receptors and cell adhesion molecules by guanine nucleotide exchange factors and GTPase activating proteins. Additionally, we will discuss how there is signaling crosstalk between family members and how various bacterial pathogens have developed strategies to manipulate Rho protein activity so as to enhance their own survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号