首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颧骨颧弓骨折的分类及诊治   总被引:1,自引:0,他引:1  
颧骨颧弓骨折是最常见的面中部骨折之一,迄今为止,在其分类及诊治的选择上仍然存在一定争议,本文对目前颧骨颧弓骨折的分类及诊治的现状和进展作一综述,以期对临床工作提供参考。  相似文献   

2.
国内外蝗害治理技术现状与展望   总被引:3,自引:0,他引:3  
张龙 《昆虫知识》2011,48(4):804-810
本文首先概述了国内外蝗虫发生与为害的态势,总结了现阶段我国蝗虫发生与为害的主要特点:即农田飞蝗暴发频繁而且严重,草原土蝗的发生时常造成严重的经济损失,而且侵入城市干扰市民生活,我国与周边国家之间蝗虫过境迁移频繁,使用化学农药污染环境和农产品;分析了国内外蝗虫防治对策与技术的发展现状,重点介绍了应急防治和可持续治理对策、...  相似文献   

3.
Cadmium and cancer of prostate and testis   总被引:13,自引:0,他引:13  
  相似文献   

4.
Abstract

Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

5.
The plasma membrane surface proteins of intact somatic (leaf) and reproductive (pollen, generative cell or sperm cell) protoplasts of lily ( Lilium longiflorum ) and rapeseed ( Brassica napus cv. Midas) were compared after probing with N-hydroxysuccinimido- (NHS) or sulfo-NHS-biotin. The plasma membranes of intact protoplasts are impermeable to these biotin probes, which bind covalently to the free amino groups of surface proteins. Enzyme-labelled streptavidin was used to detect membrane proteins after separation by SDS-PAGE and western blotting. In lily, six proteins specific to the surface membrane of leaf protoplasts were identified varying from 25–64 kDa, three proteins to pollen protoplasts in the range 35–64 kDa and two proteins to generative cell protoplasts, 63 and 67 kDa. In rapeseed leaf protoplasts, seven proteins in the range 22–69 kDa were detected, while in the sperm enriched fraction five proteins were present in the same kDa range. The proteins identified as membrane specific for generative cell protoplasts of lily have been isolated and were used as antigens for monoclonal antibody production. Preliminary results indicate the successful production of antibodies to surface antigens. These antibodies will be used to localise surface specific epitopes which are likely to be involved in cell-cell recognition at fertilization.  相似文献   

6.
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.Typical examples of eukaryotic lipids, sterols, and sphingolipids can both be found in membranes from simple unicellular fungi and protists to multicellular animals and plants. Their versatile use as structural elements but also as signaling molecules has probably played an important role during the evolution of this large and diverse group of organisms. There are also many eukaryotes that have lost the ability to synthesize sterols de novo including nematodes, insects, and marine invertebrates, which have to take up sterols with their diet. Sterol biosynthesis has also been reported in a number of bacteria. Sphingolipids are more widely spread among prokaryotes than sterols and also show a greater variety of structures among the different eukaryotes.In this short review we will first give an overview about the diversity of sterol and sphingolipid structures and their distribution in nature. Then we will discuss their subcellular distribution. A brief technical section will add some information on the separation and detection of these lipid molecules. Subsequently, we will summarize different genetic approaches to study the functions of sterols and sphingolipids, and finally, we will discuss the functional and possible physical interactions of the two lipid classes within the cell. Far from being comprehensive, we will focus only on a few interesting aspects and try to give new view points, which are less frequently discussed.  相似文献   

7.
The contents of and interrelations between macro- and microelements were determined in human myometrial tissue and myomas. Benign growth of the myometrium was found to be associated with changes in its elemental composition. Especially illustrative are the changes in the correlation between zinc and copper (and, to a lesser degree, other elements).  相似文献   

8.
Endothermic thermoregulation in small, altricial mammals and birds develops at about one third to half of adult size. The small size and consequently high heat loss in these young should result in more pronounced energetic challenges than in adults. Thus, employing torpor (a controlled reduction of metabolic rate and body temperature) during development would allow them to save energy. Although torpor during development in endotherms is likely to occur in many species, it has been documented in only a few. In small, altricial birds (4 orders) and marsupials (1 order), which are poikilothermic at hatching/birth, the development of competent endothermic thermoregulation during cold exposure appears to be concurrent with the capability to display torpor (i.e. poikilothermy is followed by heterothermy), supporting the view that torpor is phylogenetically old and likely plesiomorphic. In contrast, in small, altricial placental mammals (2 orders), poikilothermy at birth is followed first by a homeothermic phase after endothermic thermoregulation is established; the ability to employ torpor develops later (i.e. poikilothermy-homeothermy-heterothermy). This suggests that in placentals torpor is a derived trait that evolved secondarily after a homeothermic phase in certain taxa perhaps as a response to energetic challenges. As mammals and birds arose from different reptilian lineages, endothermy likely evolved separately in the two classes, and given that the developmental sequence of torpor differs between marsupials and placentals, torpor seems to have evolved at least thrice.  相似文献   

9.
张敏  谢运球 《生态科学》2007,26(4):367-373
硼和镉两种元素是影响油菜产量和品质的两个重要因素.硼是植物生长所必需的微量元素,施硼是油菜种植的必需环节;镉是植物生长的非必要元素,易在油菜体内富集,可能通过食物链危害人体健康.本文主要从镉含量与油菜食品安全品质角度考虑,阐述了油菜对镉的积累和耐受机制;同时,概括了前人总结的硼对油菜的产量和品质的影响.最后,结合本人研究区广西地区土壤有效硼含量低,全镉含量高的现状,提出运用硼镉交互作用机理,通过施加适量硼肥,提高油菜的产量和品质,消除土壤镉的潜在危害,从本质上改善该地区土壤存在的低硼高镉现状.  相似文献   

10.
The septomaxilla is a paired intramembranous ossification in the external nares that occurs in Lepidosauria among Recent Sauropsida and is purported to be present in Monotremata and Dasypodidae (armadillos) among Recent Mammalia. A review of neontological and palaeontological evidence regarding this element in mammals supports the following conclusions: (1) monotremes have a true septomaxilla resembling that known for non-mammalian therapsids and some Mesozoic mammals; (2) the element in dasypodids is a neomorph; it neither resembles the septomaxilla of other synapsids nor does it exhibit the same relationship to the developing nasal-floor cartilage as the septomaxilla of lepidosaurs and monotremes; (3) a septomaxilla is lacking in all Recent therians, and there is no evidence that this bone is fused to the premaxilla in Recent therians, as has been suggested by previous authors.  相似文献   

11.
The septomaxilla is a paired intramembranous ossification in the external nares that occurs in Lepidosauria among Recent Sauropsida and is purported to be present in Monotremata and Dasypodidae (armadillos) among Recent Mammalia. A review of neontological and palaeontological evidence regarding this element in mammals supports the following conclusions: (1) monotremes have a true septomaxilla resembling that known for non-mammalian therapsids and some Mesozoic mammals; (2) the element in dasypodids is a neomorph; it neither resembles the septomaxilla of other synapsids nor does it exhibit the same relationship to the developing nasal-floor cartilage as the septomaxilla of lepidosaurs and monotremes; (3) a septomaxilla is lacking in all Recent therians, and there is no evidence that this bone is fused to the premaxilla in Recent therians, as has been suggested by previous authors.  相似文献   

12.
Biology and conservation of sturgeon and paddlefish   总被引:4,自引:0,他引:4  
The Acipenseriformes (sturgeon and paddlefish)live in the Northern Hemisphere; half of thesespecies live in Europe, mostly in thePonto-Caspian region, one third in NorthAmerica, and the rest in East Asia and Siberia.They reproduce in freshwater and most of themmigrate to the sea, either living in brackishwater (Caspian, Azov, Black and Baltic Seas) orin full seawater on the oceanic continentalshelf. Most species feed on benthic organisms.Puberty usually occurs late in life (5–30 yearsof age) and adult males and females do notspawn on an annual basis. Adults continue togrow and some species such as the beluga (Huso huso) have reached 100 years of age andmore than 1,000 kg weight. Stocks of sturgeonsare dramatically decreasing, particularly inEurasia; the world sturgeon catch was nearly28,000 t in 1982 and less than 2,000 t by 1999.This decline resulted from overfishing andenvironmental degradation such as: accumulationof pollutants in sediments, damming of rivers,and restricting water flows, which becomeunfavorable to migration and reproduction.Several protective measures have beeninstituted; for example, fishing regulation,habitat restoration, juvenile stocking, and theCITES listing of all sturgeon productsincluding caviar. In addition, sturgeon farmingpresently yields more than 2,000 t per year(equivalent to wild sturgeon landings) andabout 15 t of caviar. Hopefully, thisartificial production will contribute to areduction of fishing pressure and lead to therehabilitation of wild stocks.  相似文献   

13.
Catalase activity in blood, liver, and kidney of a mutant strain Csb has been found to be decreased as compared to the level in normal mice. However, the extent of the reduction largely depends on the conditions used for activity determination, in particular, temperature and duration of the incubation period. In liver, this effect is most pronounced, the observed activity in mutants varying between 21 and 85% of the normal level. This dependence on the assay conditions is mainly due to the unusual heat lability of the variant enzyme, which undergoes rapid inactivation when incubated at 37 C.  相似文献   

14.
目的:克隆壳聚糖酶基因于大肠杆菌中实现高表达,制备壳寡糖。方法:以枯草芽孢杆菌总DNA为模板扩增壳聚糖酶基因(CSN),克隆至载体pET23a(+)上,转化菌株BL21(DE3)。重组子经0.5 mmol/L IPTG诱导后,SDS-PAGE和质谱检测与鉴定重组酶。酶纯化后水解壳聚糖,薄层色谱分析其水解产物。结果:质谱证明壳聚糖酶(31.5kDa)成功表达,表达量占菌体总蛋白的45%左右。纯化后重组酶浓度为900 mg/L,纯度95%、回收率85%,酶活力为10 000 U/mg。壳聚糖降解产物为壳二糖至壳四糖。结论:原核表达载体pET23a(+)-CSN构建正确,壳聚糖酶表达量与活性高,适用于水解壳聚糖制备壳寡糖。  相似文献   

15.
From the myotropic and vasopressor activities of the numerous analogs of angiotensin II, it has been determined that the phenyl group of position 8 possesses the information for biologic response while the aromatic side groups in positions 4 and 6, the guanido group in position 2 and the C-terminal carboxyl are involved in binding to the receptor site. Removal of a side group of the C-terminal phenyalanine yields peptides that bind to the receptor. While many of these have low agonist properties, all have antagonist properties. Modifications in the aromatic side groups affect conformation of the octapeptide. This change may relate to receptor binding but sufficient data are not yet available to determine a correlation pattern. A proposed conformation for angiotensin is given as well as an artist's concept of angiotensin II binding to its membrane receptor utilizing the groups known to be involved in binding. Both angiotensin II and III [des-Asp] angiotensin II stimulate the biosynthesis and release of aldosterone from adrenal glomerulosa cells. Sufficient data are not yet available to determine whether the conversion of angiotensin II to angiotensin III is neccessary for the steroidogenesis activity.  相似文献   

16.
Occurrence of the odours geosmin and 2-methylisoborneol (MIB) in freshwater environments indicates that odour-producing organisms are commonly occurring. In the present study, we assumed actinomycetes to be a major source of the odours. Seasonal concentrations of odours and abundance of Actinobacteria, which includes actinomycetes and other G+ and high GC bacteria, were determined in one oligotrophic and two eutrophic freshwater streams, as well as in aquacultures connected to these streams, in Denmark. Concentrations of geosmin and MIB ranged from 2 to 9 ng l(-1) and were lowest in the winter. Passage of stream water in the aquacultures increased the amount of geosmin and MIB by up to 55% and 110%, respectively. Densities of actinobacteria were determined by fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) technique and were found to make up from 4 to 38 x 10(7) cells l(-1), corresponding to 3-9% of the total bacterial populations. The lowest densities of actinobacteria occurred in the winter. Filamentous bacteria targeted by the FISH probe made up about 2.7-38% (average was 22%) of the actinobacteria and were expected to be actinomycetes. Combined microautoradiography and CARD-FISH demonstrated that 10-38% (incorporation of 3H-thymidine) and 41-65% (incorporation of 3H-leucine) of the actinobacteria were metabolically active. The proportion of active actinobacteria increased up to 2-fold during passage of stream water in the aquacultures, and up to 98% of the cells became active. Sequencing of 16S rRNA genes in 8 bacterial isolates with typical actinomycete morphology from the streams and ponds demonstrated that most of them belonged to the genus Streptomyces. The isolated actinomycetes produced geosmin at rates from 0.1 to 35 aggeosmin bacterium(-1)h(-1). MIB was produced at similar rates in 5 isolates, whereas no MIB was produced by three of the isolates. Addition of the odours to stream water demonstrated that indigenous stream bacteria were capable of reducing the odours, and that enrichment with LB medium stimulated the degradation. Our study shows that bacterial communities in freshwater include geosmin- and MIB-producing actinobacteria. However, the mechanisms controlling production as well as degradation of the odours in natural waters appear complex and require further research.  相似文献   

17.
研究放牧对草地植物生理活动的影响,对于揭示草地放牧演替的生理机制有重要意义.大量研究表明,家畜放牧对牧草光合作用、呼吸作用以及C和N吸收与转运的影响,可以分为生理伤害和生理恢复2个阶段.放牧通过改变草地冠层结构影响牧草光合作用,净光合作用速率短期内迅速下降,随着叶面积指数增加又逐渐上升,呼吸作用有相似的变化趋势.牧草放牧后再生长所需的C和N最初主要来自根系和留茬中的贮藏物质,此后随着牧草生长恢复逐渐由同化作用供给,C代谢与土壤N水平负相关.放牧后牧草生理活动变化与牧草遗传特性、种间竞争、家畜放牧特征、非生物环境等因素密切相关.  相似文献   

18.
Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

19.
Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 μM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In postmenopausal women, tibolone shows clear tissue differences in its stimulatory effects on the vagina and uterus. In rats, however, it has stimulatory effects on both tissues, with a different, more estrogenic, effect on the uterus than in humans. This may be due to differences in local metabolism. Therefore, in the present study, the metabolism of tibolone was analyzed in incubations of uterine and vaginal tissue from postmenopausal women and ovariectomized rats using radiolabeled tibolone in order to understand the tissue- and species-specific metabolism. In the rat, tibolone (50 nM) was mainly 3alpha-reduced to the estrogenic 3alpha-OH-tibolone in the uterus and vagina. The 3beta-OH tibolone can be isomerized to 3alpha-OH-tibolone with tibolone as intermediate. In contrast, in the same tissues from postmenopausal women, the progestagenic Delta4-isomer and estrogenic 3beta-OH-tibolone were the major metabolites of tibolone. The formation of the Delta4-isomer was higher in uterine tissue. The 3beta-hydroxysteroid dehydrogenase (HSD) inhibitor epostane had no effect on tibolone metabolism in human uterine and vaginal tissue microsomes and HEK293 cells expressing the human 3beta-HSD types 1 and 2 isoforms did not metabolize tibolone. Moreover, the 3beta-reduction of tibolone to 3beta-OH-tibolone was NADPH dependent, while the isomerization of tibolone to the Delta4-isomer did not require a cofactor. It was therefore concluded that human 3beta-HSD isoforms are not involved in the metabolism of tibolone, and that the 3beta-reduction and the Delta5-10 to Delta4 isomerization may be catalyzed by different enzymes. In conclusion, we showed that, in hormone therapy target tissues of the rat as compared with the human, different metabolic pathways for tibolone exist and therefore result in metabolites with different pharmacological properties. The rat is therefore a poor model to predict the effects of tibolone on the uterus in postmenopausal women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号