首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF). Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution. Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC. Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.  相似文献   

3.
Applying fluorescence in situ hybridisation (FISH), six cosmid clones of rhesus macaque origin containing the genes SACM2L, RING1, BAT1 and MIC2, MIC3, MICD, and MOG of the major histocompatibility complex (MHC) were localised to the long arm of the rhesus macaque chromosome 6 in 6q24, the orthologous region to human 6p21.3. Furthermore, centromere to telomere orientation of the rhesus macaque MHC as well as the internal order of the MHC genes tested are the same as in human. Fiber-FISH allows a rough estimate of distances between these MHC genes in the rhesus macaque, and, as in the human, the rhesus macaque MHC comprises about 3 to 4 Mb.  相似文献   

4.
5.
6.
The multigene family encoding the five classes of replication-dependent histones has been identified from the human and mouse genome sequence. The large cluster of histone genes, HIST1, on human chromosome 6 (6p21-p22) contains 55 histone genes, and Hist1 on mouse chromosome 13 contains 51 histone genes. There are two smaller clusters on human chromosome 1: HIST2 (at 1q21), which contains six genes, and HIST3 (at 1q42), which contains three histone genes. Orthologous Hist2 and Hist3 clusters are present on mouse chromosomes 3 and 11, respectively. The organization of the human and mouse histone genes in the HIST1 cluster is essentially identical. All of the histone H1 genes are in HIST1, which is spread over about 2 Mb. There are two large gaps (>250 kb each) within this cluster where there are no histone genes, but many other genes. Each of the histone genes encodes an mRNA that ends in a stemloop followed by a purine-rich region that is complementary to the 5' end of U7 snRNA. In addition to the histone genes on these clusters, only two other genes containing the stem-loop sequence were identified, a histone H4 gene on human chromosome 12 (mouse chromosome 6) and the previously described H2a.X gene located on human chromosome 11. Each of the 14 histone H4 genes encodes the same protein, and there are only three histone H3 proteins encoded by the 12 histone H3 genes in each species. In contrast, both the mouse and human H2a and H2b proteins consist of at least 10 non-allelic variants, making the complexity of the histone protein complement significantly greater than previously thought.  相似文献   

7.
8.
The human major histocompatibility complex (MHC), on the short arm of chromosome 6, represents one of the most extensively characterised regions of the human genome. This approximately 4 Mb segment of DNA contains genes encoding the polymorphic MHC class I and class II molecules which are involved in antigen presentation during an immune response. Recently the whole of the MHC has been cloned in cosmids and/or yeast artificial chromosomes (YACs) and large portions have been characterised for the presence of novel genes. Many unrelated genes, both housekeeping and tissue specific, have been identified and the gene density in some regions is now approaching one gene every few kilobases. Some of the novel genes encode proteins involved in the intracellular processing and transport of antigens that are presented by MHC class I molecules. Others, however, have no obvious role in the immune response. The MHC is located in the chromosome band 6p21.3 which is a Giemsa (G)-light band. The detection of such a large number of functional genes (at least 70) in this region is compatible with the idea that both housekeeping and tissue-specific genes are localised predominantly in G-light bands.  相似文献   

9.
Herpesviruses or herpesviral sequences have been identified in various bat species. Here, we report the isolation, cell tropism, and complete genome sequence of a novel betaherpesvirus from the bat Miniopterus schreibersii (MsHV). In primary cell culture, MsHV causes cytopathic effects (CPE) and reaches peak virus production 2 weeks after infection. MsHV was found to infect and replicate less efficiently in a feline kidney cell, CRFK, and failed to replicate in 13 other cell lines tested. Sequencing of the MsHV genome using the 454 system, with a 224-fold coverage, revealed a genome size of 222,870 bp. The genome was extensively analyzed in comparison to those of related viruses. Of the 190 predicted open reading frames (ORFs), 40 were identified as herpesvirus core genes. Among 93 proteins with identifiable homologues in tree shrew herpesvirus (THV), human cytomegalovirus (HCMV), or rat cytomegalovirus (RCMV), most had highest sequence identities with THV counterparts. However, the MsHV genome organization is colinear with that of RCMV rather than that of THV. The following unique features were discovered in the MsHV genome. One predicted protein, B125, is similar to human herpesvirus 6 (HHV-6) U94, a homologue of the parvovirus Rep protein. For the unique ORFs, 7 are predicted to encode major histocompatibility complex (MHC)-related proteins, 2 to encode MHC class I homologues, and 3 to encode MHC class II homologues; 4 encode the homologues of C-type lectin- or natural killer cell lectin-like receptors;, and the products of a unique gene family, the b149 family, of 16 members, have no significant sequence identity with known proteins but exhibit immunoglobulin-like beta-sandwich domains revealed by three-dimensional (3D) structural prediction. To our knowledge, MsHV is the first virus genome known to encode MHC class II homologues.  相似文献   

10.
11.
Histones are highly basic, relatively small proteins that complex with DNA to form higher order structures that underlie chromosome topology. Of the four core histones H2A, H2B, H3 and H4, it is H3 that is most heavily modified at the post-translational level. The human genome harbours 16 annotated bona fide histone H3 genes which code for four H3 protein variants. In 2010, two novel histone H3.3 protein variants were reported, carrying over twenty amino acid substitutions. Nevertheless, they appear to be incorporated into chromatin. Interestingly, these new H3 genes are located on human chromosome 5 in a repetitive region that harbours an additional five H3 pseudogenes, but no other core histone ORFs. In addition, a human-specific novel putative histone H3.3 variant located at 12p11.21 was reported in 2011. These developments raised the question as to how many more human histone H3 ORFs there may be. Using homology searches, we detected 41 histone H3 pseudogenes in the current human genome assembly. The large majority are derived from the H3.3 gene H3F3A, and three of those may code for yet more histone H3.3 protein variants. We also identified one extra intact H3.2-type variant ORF in the vicinity of the canonical HIST2 gene cluster at chromosome 1p21.2. RNA polymerase II occupancy data revealed heterogeneity in H3 gene expression in human cell lines. None of the novel H3 genes were significantly occupied by RNA polymerase II in the data sets at hand, however. We discuss the implications of these recent developments.  相似文献   

12.
The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms.  相似文献   

13.
Prokopenko SN  He Y  Lu Y  Bellen HJ 《Genetics》2000,156(4):1691-1715
In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens.  相似文献   

14.
15.
Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability.  相似文献   

16.
17.
To test the avian-origin hypothesis of the 1918 Spanish influenza virus we surveyed influenza sequences from a broad taxonomic distribution and collected 65 full-length genomes representing avian, human and "classic" swine H1N1 lineages in addition to numerous other swine (H1N2, H3N1, and H3N2), human (H2N2, H3N2, and H5N1), and avian (H1N1, H4N6, H5N1, H6N1, H6N6, H6N8, H7N3, H8N4, H9N2, and H13N2) subtypes. Amino acids from all eight segments were concatenated, aligned, and used for phylogenetic analyses. In addition, the genes of the polymerase complex (PB1, PB2, and PA) were analyzed individually. All of our results showed the Brevig-Mission/1918 strain in a position basal to the rest of the clade containing human H1N1s and were consistent with a reassortment hypothesis for the origin of the 1918 virus. Our genome phylogeny further indicates a sister relationship with the "classic" swine H1N1 lineage. The individual PB1, PB2, and PA phylogenies were consistent with reassortment/recombination hypotheses for these genes. These results demonstrate the importance of using a complete-genome approach for addressing the avian-origin hypothesis and predicting the emergence of new pandemic influenza strains.  相似文献   

18.
Recent evidence suggests that human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase delta, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21(waf1/cip1)), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1alpha), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90alpha and beta, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.  相似文献   

19.
Recent technological advances in microscopy have enabled cell-based whole genome screens, but the analysis of the vast amount of image data generated by such screens usually proves to be rate limiting. In this study, we performed a whole genome RNA interference (RNAi) screen to uncover genes that affect spreading of Drosophila melanogaster S2 cells using several computational methods for analyzing the image data in an automated manner. Expected genes in the Scar-Arp2/3 actin nucleation pathway were identified as well as casein kinase I, which had a similar morphological RNAi signature. A distinct nonspreading morphological phenotype was identified for genes involved in membrane secretion or synthesis. In this group, we identified a new secretory peptide and investigated the functions of two poorly characterized endoplasmic reticulum proteins that have roles in secretion. Thus, this genome-wide screen succeeded in identifying known and unexpected proteins that are important for cell spreading, and the computational tools developed in this study should prove useful for other types of automated whole genome screens.  相似文献   

20.

Background

Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies.

Methods

In this study, the NP from a swine IAV was cloned into a yeast two-hybrid “bait” vector for expression of a yeast Gal4 binding domain (BD)-NP fusion protein. This “bait” was used to screen a Y2H human HeLa cell “prey” library which consisted of human proteins fused to the Gal4 protein’s activation domain (AD). The interaction of “bait” and “prey” proteins resulted in activation of reporter genes.

Results

Seventeen positive bait-prey interactions were isolated in yeast. All of the “prey” isolated also interact in yeast with a NP “bait” cloned from a human IAV strain. Isolation and sequence analysis of the cDNAs encoding the human prey proteins revealed ten different human proteins. These host proteins are involved in various host cell processes and structures, including purine biosynthesis (PAICS), metabolism (ACOT13), proteasome (PA28B), DNA-binding (MSANTD3), cytoskeleton (CKAP5), potassium channel formation (KCTD9), zinc transporter function (SLC30A9), Na+/K+ ATPase function (ATP1B1), and RNA splicing (TRA2B).

Conclusions

Ten human proteins were identified as interacting with IAV NP in a Y2H screen. Some of these human proteins were reported in previous screens aimed at elucidating host proteins relevant to specific viral life cycle processes such as replication. This study extends previous findings by suggesting a mechanism by which these host proteins associate with the IAV, i.e., physical interaction with NP. Furthermore, this study revealed novel host protein-NP interactions in yeast.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号