首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.  相似文献   

2.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

3.
Antzutkin ON  Leapman RD  Balbach JJ  Tycko R 《Biochemistry》2002,41(51):15436-15450
We describe electron microscopy (EM), scanning transmission electron microscopy (STEM), and solid-state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the 42-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1)(-)(42)) and by residues 10-35 of the full-length peptide (Abeta(10)(-)(35)). These measurements place constraints on the supramolecular structure of the amyloid fibrils, especially the type of beta-sheets present in the characteristic amyloid cross-beta structural motif and the assembly of these beta-sheets into a fibril. EM images of negatively stained Abeta(10)(-)(35) fibrils and measurements of fibril mass per length (MPL) by STEM show a strong dependence of fibril morphology and MPL on pH. Abeta(10)(-)(35) fibrils formed at pH 3.7 are single "protofilaments" with MPL equal to twice the value expected for a single cross-beta layer. Abeta(10)(-)(35) fibrils formed at pH 7.4 are apparently pairs of protofilaments or higher order bundles. EM and STEM data for Abeta(1)(-)(42) fibrils indicate that protofilaments with MPL equal to twice the value expected for a single cross-beta layer are also formed by Abeta(1)(-)(42) and that these protofilaments exist singly and in pairs at pH 7.4. Solid-state NMR measurements of intermolecular distances in Abeta(10)(-)(35) fibrils, using multiple-quantum (13)C NMR, (13)C-(13)C dipolar recoupling, and (15)N-(13)C dipolar recoupling techniques, support the in-register parallel beta-sheet organization previously established by Lynn, Meredith, Botto, and co-workers [Benzinger et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13407-13412; Benzinger et al. (2000) Biochemistry 39, 3491-3499] and show that this beta-sheet organization is present at pH 3.7 as well as pH 7.4 despite the differences in fibril morphology and MPL. Solid-state NMR measurements of intermolecular distances in Abeta(1)(-)(42) fibrils, which represent the first NMR data on Abeta(1)(-)(42) fibrils, also indicate an in-register parallel beta-sheet organization. These results, along with previously reported data on Abeta(1)(-)(40) fibrils, suggest that the supramolecular structures of Abeta(10)(-)(35), Abeta(1)(-)(40), and Abeta(1)(-)(42) fibrils are quite similar. A schematic structural model of these fibrils, consistent with known experimental EM, STEM, and solid-state NMR data, is presented.  相似文献   

4.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

5.
Protein-protein interactions are frequently mediated by stable, intermolecular beta-sheets. A number of cytokines and the HIV Protease, for example, dimerize through beta-sheet motifs. Evidence also suggests that the macromolecular assemblies of peptides and proteins in amyloid fibrils are stabilized by intermolecular beta-sheets. In this paper, we report that interfering with the backbone hydrogen bonding of an amyloidgenic peptide (Abeta16-20) by replacing amide bonds with ester bonds prevents the aggregation of the peptide. The ester bonds were incorporated in an alternating fashion so that the peptide presents two unique hydrogen bonding faces when arrayed in an extended, beta-strand conformation; one face of the peptide has normal hydrogen bonding capabilities, but the other face is missing amide protons and its ability to hydrogen bond is severely limited. Analytical ultracentrifugation experiments demonstrate that this ester peptide, Abeta16-20e, is predominantly monomeric under solution conditions, unlike the fibril-forming Abeta16-20 peptide. Abeta16-20e also inhibits the aggregation of the Abeta1-40 peptide and disassembles preformed Abeta1-40 fibrils. These results suggest that backbone hydrogen bonding is critical for the assembly of amyloid fibrils.  相似文献   

6.
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.  相似文献   

7.
The 39- to 42-residue-long amyloid beta-peptide (Abeta-peptide) forms filamentous structures in the neuritic plaques found in the neuropil of Alzheimer's disease patients. The assembly and deposition of Abeta-fibrils is one of the most important factors in the pathogenesis of this neurodegenerative disease. Although the structural analysis of amyloid fibrils is difficult, single-molecule methods may provide unique insights into their characteristics. In the present work, we explored the nanomechanical properties of amyloid fibrils formed from the full-length, most neurotoxic Abeta1-42 peptide, by manipulating individual fibrils with an atomic force microscope. We show that Abeta-subunit sheets can be mechanically unzipped from the fibril surface with constant forces in a reversible transition. The fundamental unzipping force (approximately 23 pN) was significantly lower than that observed earlier for fibrils formed from the Abeta1-40 peptide (approximately 33 pN), suggesting that the presence of the two extra residues (Ile and Ala) at the peptide's C-terminus result in a mechanical destabilization of the fibril. Deviations from the constant force transition may arise as a result of geometrical constraints within the fibril caused by its left-handed helical structure. The nanomechanical fingerprint of the Abeta1-42 is further influenced by the structural dynamics of intrafibrillar interactions.  相似文献   

8.
Amyloid fibril deposition is central to the pathology of Alzheimer's disease. X-ray diffraction from amyloid fibrils formed from full-length Abeta(1-40) and from a shorter fragment, Abeta(11-25), have revealed cross-beta diffraction fingerprints. Magnetic alignment of Abeta(11-25) amyloid fibrils gave a distinctive X-ray diffraction texture, allowing interpretation of the diffraction data and a model of the arrangement of the peptides within the amyloid fiber specimen to be constructed. An intriguing feature of the structure of fibrillar Abeta(11-25) is that the beta sheets, of width 5.2 nm, stack by slipping relative to each other by the length of two amino acid units (0.70 nm) to form beta ribbons 4.42 nm in thickness. Abeta(1-40) amyloid fibrils likely consist of once-folded hairpins, consistent with the size of the fibers obtained using electron microscopy and X-ray diffraction.  相似文献   

9.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

10.
Recent solid-state NMR data (1) demonstrate that Abeta(1)(-)(40) adopts a conformation in amyloid fibrils with two in-register, parallel beta-sheets, connected by a bend structure encompassing residues D(23)VGSNKG(29), with a close contact between the side chains of Asp23 and Lys28. We hypothesized that forming this bend structure might be rate-limiting in fibril formation, as indicated by the lag period typically observed in the kinetics of Abeta(1)(-)(40) fibrillogenesis. We synthesized Abeta(1)(-)(40)-Lactam(D23/K28), a congener Abeta(1)(-)(40) peptide that contains a lactam bridge between the side chains of Asp23 and Lys28. Abeta(1)(-)(40)-Lactam(D23/K28) forms fibrils similar to those formed by Abeta(1)(-)(40). The kinetics of fibrillogenesis, however, occur without the typical lag period, and at a rate approximately 1000-fold greater than is seen with Abeta(1)(-)(40) fibrillogenesis. The strong tendency toward self-association is also shown by size exclusion chromatography in which Abeta(1)(-)(40)-Lactam(D23/K28) forms oligomers even at concentrations of approximately 1-5 microM. Under the same conditions, Abeta(1)(-)(40) shows no detectable oligomers by size exclusion chromatography. Our data suggest that Abeta(1)(-)(40)-Lactam(D23/K28) could bypass an unfavorable folding step in fibrillogenesis, because the lactam linkage "preforms" a bendlike structure in the peptide. Consistent with this view Abeta(1)(-)(40) growth is efficiently nucleated by Abeta(1)(-)(40)-Lactam(D23/K28) fibril seeds.  相似文献   

11.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

12.
The 16-22 amino-acid fragment of the beta-amyloid peptide associated with the Alzheimer's disease, Abeta, is capable of forming amyloid fibrils. Here we study the aggregation mechanism of Abeta16-22 peptides by unbiased thermodynamic simulations at the atomic level for systems of one, three, and six Abeta16-22 peptides. We find that the isolated Abeta16-22 peptide is mainly a random coil in the sense that both the alpha-helix and beta-strand contents are low, whereas the three- and six-chain systems form aggregated structures with a high beta-sheet content. Furthermore, in agreement with experiments on Abeta16-22 fibrils, we find that large parallel beta-sheets are unlikely to form. For the six-chain system, the aggregated structures can have many different shapes, but certain particularly stable shapes can be identified.  相似文献   

13.
Egnaczyk GF  Greis KD  Stimson ER  Maggio JE 《Biochemistry》2001,40(39):11706-11714
The assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands. We demonstrate here the use of photoaffinity cross-linking to determine high-resolution structural constraints on Abeta monomers within amyloid fibrils. A photoreactive Abeta(1-40) ligand was synthesized by substituting L-p-benzoylphenylalanine (Bpa) for phenylalanine at position 4 (Abeta(1-40) F4Bpa). This peptide was incorporated into synthetic amyloid fibrils and irradiated with near-UV light. SDS-PAGE of dissolved fibrils revealed the light-dependent formation of a covalent Abeta dimer. Enzymatic cleavage followed by mass spectrometric analysis demonstrated the presence of a dimer-specific ion at MH(+) = 1825.9, the predicted mass of a fragment composed of the N-terminal Abeta(1-5) F4Bpa tryptic peptide covalently attached to the C-terminal Abeta(29-40) tryptic peptide. MS/MS experiments and further chemical modifications of the cross-linked dimer led to the localization of the photo-cross-link between the ketone of the Bpa4 side chain and the delta-methyl group of the Met35 side chain. The Bpa4-Met35 intermolecular cross-link is consistent with an antiparallel alignment of Abeta peptides within amyloid fibrils.  相似文献   

14.
Glycopolymers carrying sulfated saccharides with modest sugar contents (11% and 28%) were found to suppress the formation of amyloid fibrils by amyloid beta peptides (Abeta(1-42), Abeta(1-40), and Abeta(25-35)), as evaluated by thioflavin T assays and atomic force microscopy observation. Circular dichroism spectra showed that the conformation of amyloid beta peptides depended on the glycopolymer additives, and that the glycopolymer additives reduced the beta-sheet contents. Neutralization activity was confirmed by in vitro assay with HeLa cells. The sulfate group and the appropriate sugar contents were essential for the inhibitory effect.  相似文献   

15.
In a recent model of beta-amyloid (Abeta) fibrils, based mainly on solid-state NMR data, a molecular layer consists of two beta-sheets (residues 12-23 and 31-40 of Abeta1-40), folded onto one another by a connecting "bend" structure (residues 25-29) in the side-chain dimension. In this paper, we use two N-methyl amino acids to disrupt each of the two beta-sheets individually (2NMe(NTerm), residues 17 and 19; and 2NMe(CTerm), residues 37 and 39), or both of them at the same time (4NMe, with the above four N-methylated residues). Our data indicate that incorporation of two N-methyl amino acids into one beta-sheet is sufficient to disrupt that sheet while leaving the other, unmodified beta-sheet intact and able to form fibrils. We show, however, that disruption of each of the two beta-sheets has strikingly different effects on fibrillogenesis kinetics and fibril morphology. Both 2NMe(NTerm) and 2NMe(CTerm) form fibrils at similar rates, but more slowly than that of unmodified Abeta1-40. Electron microscopy shows that 2NMe(NTerm) forms straight fibrils with fuzzy amorphous material coating the edges, while 2NMe(CTerm) forms very regular, highly twisted fibrils-in both cases, distinct from the morphology of Abeta1-40 fibrils. Both 2NMe peptides show a "CMC" approximately four times greater than that of Abeta1-40. CD spectra of these peptides also evolve differently in time: whereas the CD spectra of 2NMe(NTerm) evolve little over 10 days, those of 2NMe(CTerm) show a transition to high beta-sheet content at about day 4-5. We also show that disruption of both beta-sheet domains, as in 4NMe, prevents fibril formation altogether, and renders Abeta1-40 highly water soluble and monomeric, and with solvent-exposed side chains. In summary, our data show (1) that the two beta-sheet domains fold in a semiautonomous manner, since disrupting each one still allows the other to fold; (2) that disruption of the N-terminal beta-sheet has a more profound effect on fibrillogenesis than disruption of the C-terminal beta-sheet, suggesting that the former is the more critical for the overall structure of the fibril; and (3) that disruption of both beta-sheet domains renders the peptide monomeric and unable to form fibrils.  相似文献   

16.
Visualization and classification of amyloid beta supramolecular assemblies   总被引:1,自引:0,他引:1  
Yagi H  Ban T  Morigaki K  Naiki H  Goto Y 《Biochemistry》2007,46(51):15009-15017
Deposition of amyloid beta (Abeta) fibrils has been suggested to play a central role in Alzheimer's disease. In clarifying the mechanism by which fibrils form and moreover in developing new treatments for amyloidosis, direct observation is important. Focusing on the interactions with surfaces at the early stages, we studied the spontaneous formation of Abeta(1-40) fibrils on quartz slides, monitored by total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye. Self-assembly of Abeta(1-40), accelerated by a low concentration of sodium dodecyl sulfate, produced various remarkable amyloid assemblies. Densely packed spherulitic structures with radial fibril growth were typically observed. When the packing of fibrils was coarse, extremely long fibrils often protruded from the spherulitic cores. In other cases, a large number of wormlike fibrils were formed. Transmission electron microscopy and atomic force microscopy revealed relatively short and straight fibrillar blocks associated laterally without tight interaction, leading to random-walk-like fibril growth. These results suggest that, during spontaneous fibrillation, the nucleation occurring in contact with surfaces is easily affected by environmental factors, creating various types of nuclei, and hence variations in amyloid morphology. A taxonomy of amyloid supramolecular assemblies will be useful in clarifying the structure-function relationship of amyloid fibrils.  相似文献   

17.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

18.
Using the experimental structures of Abeta amyloid fibrils and all-atom molecular dynamics, we study the force-induced unbinding of Abeta peptides from the fibril. We show that the mechanical dissociation of Abeta peptides is highly anisotropic and proceeds via different pathways when force is applied in parallel or perpendicular direction with respect to the fibril axis. The threshold forces associated with lateral unbinding of Abeta peptides exceed those observed during the mechanical dissociation along the fibril axis. In addition, Abeta fibrils are found to be brittle in the lateral direction of unbinding and soft along the fibril axis. Lateral mechanical unbinding and the unbinding along the fibril axis load different types of fibril interactions. Lateral unbinding is primarily determined by the cooperative rupture of fibril backbone hydrogen bonds. The unbinding along the fibril axis largely depends on the interpeptide Lys-Asp electrostatic contacts and the hydrophobic interactions formed by the Abeta C terminal. Due to universality of the amyloid beta structure, the anisotropic mechanical dissociation observed for Abeta fibrils is likely to be applicable to other amyloid assemblies. The estimates of equilibrium forces required to dissociate Abeta peptide from the amyloid fibril suggest that these supramolecular structures are mechanically stronger than most protein domains.  相似文献   

19.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

20.
Amyloid fibrils characterized as highly intractable thread-like species are associated with many neurodegenerative diseases. Although neither the mechanism of amyloid formation nor the origin of amyloid toxicity is currently completely understood, the detailed three-dimensional atomic structures of the yeast protein Sup35 and Abeta amyloid protein determined by recent experiments provide the first and important step towards the comprehension of the pathogenesis and aggregation mechanisms of amyloid diseases. By analyzing these two amyloid peptides which have available crystal structures and other amyloid sequences with proposed structures using computational simulations, we delineate three common features in amyloid organizations and amyloid structures. These could contribute to an improved understanding of the molecular mechanism of amyloid formation, the nature of the aggregation driving forces that stabilize these structures and the development of potential therapeutic agents against amyloid diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号