首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract. We have previously observed that the DNA topoisomerase I inhibitor camptothecin (CAM), or DNA topoisomerase II inhibitors teniposide (TEN) and amsacrine (m-AMSA) trigger endonucleolytic activity in myelogenous (HL-60 or KGl), but not lymphocytic (MOLT-4) leukaemic cell lines. DNA degradation and other signs of apoptotic death were seen as early as 2–4 h after cell exposure to these inhibitors. Cells replicating DNA (S phase) were selectively sensitive whereas cells in G1 were resistant; the sensitivity of G2 or M cells could not be assessed in these studies. The present studies were aimed at revealing whether DNA repair replication induced by ionizing radiation can sensitize the cells, and to probe the sensitivity of cells arrested in G2 or M, to these inhibitors. The data show that γ-irradiation (0.5–15 Gy) of HL-60 cells does not alter their pattern of sensitivity, i.e. G1 cells, although engaged in DNA repair replication, still remain resistant to CAM compared with the S phase cells. Likewise, irradiation of MOLT-4 cells also does not render them sensitive to either CAM or TEN, regardless of their position in the cell cycle. Irradiation, however, by slowing the rate of cell progression through S, increased the proportion of S phase cells, and thus made the whole cell population more sensitive to CAM. HL-60 cells arrested in G2 either by irradiation or treatments with Hoechst 33342 or doxorubicin appear to be more resistant to CAM relative to S phase cells. Also resistant are cells arrested in M by vinblastine. The data suggest that some factor(s) exist exclusively in S phase cells, which precondition them to respond to the inhibitors of DNA topoisomerases by rapid activation of endogenous nuclease(s) and subsequent death by apoptosis. HL-60 cells in G1, G2 or M, or MOLT-4 cells, regardless of the phase of the cycle, appear to be protected from such a mechanism, and even induction of DNA repair replication cannot initiate DNA degradation in response to DNA topoisomerase inhibitors. These data, together with the evidence in the literature that topoisomerase I may be involved in DNA repair, suggest that a combination of these inhibitors with treatments that synchronize cells in the S phase and/or recruit quiescent cells to proliferation, including radiation, may be of value in the clinic.  相似文献   

2.
Exposure of promyelocytic leukemic HL-60 cells to 3-60 nM of the DNA topoisomerase I inhibitor camptothecin (CAM) or to 30-450 nM and 0.12-1.5 microM of DNA topoisomerase II inhibitors teniposide (TN) and 4-(9-acridynylamino)-3-methanesulfon-m-anisidide (m-AMSA), respectively, resulted in two distinct kinetic effects: (1) the cells entered S phase but the rate of DNA replication was reduced in proportion to the inhibitor concentration; (2) the transition from G2 to M was impaired, approximately 1 h after addition of the inhibitor. As a consequence, the cells accumulated in the S (preferentially in early S) and in G2 phases of the cell cycle. Whereas CAM was more efficient in suppressing cell progression through S phase, TN and m-AMSA were more potent G2 blockers. At these low inhibitor concentrations no signs of immediate cytotoxicity or DNA degradation were apparent. However, above 145 nM of CAM, 900 nM of TN, or 2 microM of m-AMSA extensive DNA degradation in nuclei of S phase cells was evident within 6 h of addition of the inhibitor, resulting in the loss of S and G2 + M cells from these cultures. The data indicate that depending on concentration, mechanisms mediating the cytostatic/cytotoxic activity of both DNA topoisomerase I and II inhibitors may be quite different. Suppression of the DNA replication and the G2 to M transition, seen at low inhibitor concentrations, is compatible with the assumption that the inhibitor-induced stabilization of the topoisomerase-DNA cleavable complexes interferes with DNA replication and chromosome condensation/segregation, respectively. Above the threshold concentration for each inhibitor, an endonucleolytic activity is triggered, resulting in rapid DNA degradation in nuclei of S and G2 phase cells. The endonucleolytic effect is not only cell cycle phase-specific but is also modulated by tissue-specific factors because it cannot be observed, e.g., in the lymphocytic leukemic cell lines.  相似文献   

3.
4.
BACKGROUND: During camptothecin (CAM)-induced apoptosis of HL-60 cells, the external exposure of phosphatidylserine (PS) can either precede or follow DNA cleavage. The evidence suggests that cells in S-phase when CAM is added undergo rapid DNA, nuclear, and cellular disintegration before exposing PS on the outside of the plasma membrane, whereas cells moving from G1 into S-phase after CAM is added expose PS before they manifest the other phenomena. This study describes further investigations using the broad spectrum caspase inhibitor Z-VAD-FMK. The cells were cultured for a period long enough to ascertain whether a particular phenomenon was only delayed or was blocked completely. METHODS: Changes in cell light scatter, binding of annexin V-fluorescein isothiocyanate (FITC) to PS, uptake of propidium iodide (PI) as a measure of plasma membrane integrity, and DNA content after membrane fixation/permeabilization were monitored by flow cytometry during 24-h cultures. Fluorescence microscopy was used to examine cell morphology. RESULTS: Caspase inhibition blocked DNA cleavage, breakdown of the nuclear membrane, and formation of apoptotic bodies. It also revealed the existence of a CAM-activated early S-phase checkpoint. Cells arrested in early S-phase preceded the appearance of PS-positive cells. Caspase inhibition delayed both PS exposure and loss of plasma membrane integrity but did not prevent either. CONCLUSIONS: The results support the hypothesis that the sequence of apoptotic phenomena in an individual CAM-treated HL-60 cell depends on the stage of proliferation of that cell when it encounters the CAM. They are also consistent with the hypothesis that caspases are not required for PS exposure or the loss of plasma membrane integrity, but they are involved indirectly in promoting these phenomena.  相似文献   

5.
Cells of the human promyelocytic HL-60 line, when treated with a variety of antitumor agents in the presence of the protein synthesis inhibitor cycloheximide (CHX), or with CHX alone, rapidly undergo apoptosis (“active cell death”). It is presumed, therefore, that such cells are “primed” to apoptosis in that no new protein synthesis is required for induction of their death. We have studied apoptosis of HL-60 cells triggered by the DNA topoisomerase I inhibitor camptothecin (CAM) in the absence and presence of CHX and apoptosis induced by CHX alone. Two different flcw cytometric methods were used, each allowing us to relate the apoptosis-associated DNA degradation to the cell cycle position. Apoptosis induced by CAM was limited to S phase cells, e.g., at a CAM concentration of 0.15 μM, nearly 90% of the S phase cells underwent apoptosis after 4 h. In contrast, apoptosis triggered by CHX was indiscriminate, affecting all phases of the cycle: ~40% of the cells from each phase the cycle underwent apoptosis at 5 μM CHX concentration. When CAM and CHX were added together, the pattern of apoptosis resembled that of cycloheximide alone, namely, cells in all phases of the cycle in similar proportion were affected. Thus, CHX, while itself inducing apoptosis of a fraction of cells, protected the S phase cells against apoptosis triggered by CAM. Because CHX (5 μM) did not significantly affect the rate of cell progression through S phase, the observed protective effect was most likely directly related to inhibition of protein synthesis, rather than to its possible indirect effect on DNA replication. Furthermore, whereas apoptosis (DNA degradation) triggered by CAM was prevented by the serine protease inhibitor N-tosyl-L-lysylchloromethyl ketone (TLCK), this process was actually potentiated by this inhibitor when induced by CHX. The present data indicate differences in mechanism of apoptosis triggered by CAM (and perhaps other antitumor drugs) as compared with CHX. Apoptosis caused by CHX may be unique in that it may not involve new protein synthesis. These data are compatible with the assumption that the loss of a hypothetical, rapidly turning over suppressor of apoptosis may be the trigger of apoptosis of HL-60 cells treated with CHX, whereas de novo protein synthesis is required when apoptosis is triggered by other agents. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The use of DNAase I as a probe of chromatin structure is frequently fraught with problems of irreproducibility. We have recently evaluated this procedure, documented the sources of the problems, and standardized the method for reproducible results (Prentice and Gurley (1983) Biochim. Biophys. Acta 740, 134-144). We have now used this probe to detect differences in chromatin structure between cells blocked (1) in G1 phase by isoleucine deprivation, or (2) in early S phase by sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea. The cells blocked in G1 phase have easily-digestible chromatin, while cells blocked in early S phase have chromatin which is much more resistant to DNAase I. These differences were found to be the result of diffusible factors found in the cytoplasm and nuclei of G1- and S-phase cells, respectively. The G1 cells contained a cytoplasmic factor which modulates the chromatin structure of S-phase nuclei to a more easily digestible state, while cells blocked in S phase contain a nuclear factor which modulates the chromatin structure of G1 nuclei to a state more resistant to digestion. DNAase I is much more sensitive to these cell cycle-specific chromatin changes than is micrococcal nuclease. The results indicate that, under controlled conditions, DNAase I should be a valuable probe for detecting chromatin structural changes associated with cell cycle traverse, differentiation, development, hormone action and chemical toxicity.  相似文献   

7.
The use of DNAase I as a probe of chromatin structure is frequently fraught with problems of irreproducibility. We have recently evaluated this procedure, documented the sources of the problems, and standardized the method for reproducible results (Prentice and Gurley (1983) Biochim. Biophys. Acta 740, 134–144). We have now used this probe to detect differences in chromatin structure between cells blocked (1) in G1 phase by isoleucine deprivation, or (2) in early S phase by sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea. The cells blocked in G1 phase have easily-digestible chromatin, while cells blocked in early S phase have chromatin which is much more resistant to DNAase I. These differences were found to be the result of diffusible factors found in the cytoplasm and nuclei of G1- and S-phase cells, respectively. The G1 cells contained a cytoplasmic factor which modulates the chromatin structure of S-phase nuclei to a more easily digestible state, while cells blocked in S phase contain a nuclear factor which modulates the chromatin structure of G1 nuclei to a state more resistant to digestion. DNAase I is much more sensitive to these cell cycle-specific chromatin changes than is micrococcal nuclease. The results indicate that, under controlled conditions, DNAase I should be a valuable probe for detecting chromatin structural changes associated with cell cycle traverse, differentiation, development, hormone action and chemical toxicity.  相似文献   

8.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

9.
Topoisomerases are known to aid DNA replication by breaking and resealing supercoiled DNA. Consequently, cells exposed to topoisomerase inhibitors before or during the S (DNA synthetic) phase of the cell cycle undergo abnormal DNA replication and become irreversibly blocked in the G2 (pre-mitosis) phase. We report that following a 4-h exposure to topoisomerase II inhibitors, murine erythroleukemic cells (MELC) do not form mitotic figures but exhibit a time-dependent progression into G2 (4N DNA) and greater than G2 (up to 8N DNA) stages of the cell cycle. Following exposure to the topoisomerase I inhibitor camptothecin, recovering MELC also exhibit greater than G2 polyploidy, but to a considerably lesser degree: mitotic figures are present and a subpopulation of cells resumes cycling. However, both topo I and topo II inhibitors induce maximal percentages of greater than G2 cells when synchronized MELC are in the G2/M phase at the time of exposure. This suggests that, in addition to their S-phase action, topoisomerase inhibitors can interfere with chromosome condensation during G2 and, in so doing, induce polyploidy.  相似文献   

10.
The alternative application of an automated hematology analyzer, H*3 system, has been described for the detection of apoptosis. Apoptosis induction by the topoisomerase I inhibitor, camptothecin (CAM) on several cell lines is followed by typical morphological alterations. On the H*3 cytogram, measurement of CAM-treated cells revealed an increased population of cells with reduced size suggesting cell contraction during apoptosis. The decreased LUC/Lymph ratio also indicated the enhanced degree of apoptosis directly correlated with increasing CAM concentration and/or incubation period. Quantitative analysis shows a good correlation between the H*3 measurement and flow cytometry measurements of Annexin V-fluorescein isothiocyanate-labeled method. Thus, the H*3 measurement, under an appropriate adjustment, can be used as a rapid monitor for evaluating the degree of apoptotic changes in drug susceptibility testing of homogeneous cell samples.  相似文献   

11.
12.
Breast cancer-associated protein 1 (BRCA1) forms foci at sites of induced DNA damage, but any significance of these normal S-phase foci is unknown. BRCA1 distribution does not simply mirror or overlap that of replicating DNA; however, BRCA1 foci frequently abut sites of BrdU incorporation, mostly at mid-to-late S phase. Although BRCA1 does not overlap XIST RNA across the inactive X chromosome, BRCA1 foci position overwhelmingly in heterochromatic regions, particularly the nucleolar periphery where many centromeres reside. In humans and mice, including early embryonic cells, BRCA1 commonly associates with interphase centromere-kinetochore complexes, including pericentric heterochromatin. Proliferating cell nuclear antigen or BrdU labeling demonstrates that BRCA1 localizes adjacent to, or "paints," major satellite blocks as chromocenters replicate, where topoisomerase is also enriched. BRCA1 loss is often associated with proliferative defects, including postmitotic bridges enriched with satellite DNA. These findings implicate BRCA1 in replication-linked maintenance of centric/pericentric heterochromatin and suggest a novel means whereby BRCA1 loss may contribute to genomic instability and cancer.  相似文献   

13.
14.
Topoisomerase II is a multifunctional protein required during DNA replication, chromosome disjunction at mitosis, and other DNA-related activities by virtue of its ability to alter DNA supercoiling. The enzyme is encoded by two similar but nonidentical genes: the topoisomerase IIalpha and IIbeta genes. In HeLa cells synchronized by mitotic shake-off, topoisomeraseII alpha mRNA levels were found to vary as a function of cell cycle position, being 15-fold higher in late S phase (14 to 18 h postmitosis) than during G1 phase. Also detected was a corresponding increase in topoisomerase IIalpha protein synthesis at 14 to 18 h postmitosis which resulted in significantly higher accumulation of the protein during S and G2 phases. Topoisomerase IIalpha expression was not dependent on DNA synthesis during S phase, which could be inhibited without effect on the timing or level of mRNA expression. Mechanistically, topoisomerase IIalpha expression appears to be coupled to cell cycle position mainly through associated changes in mRNA stability. When cells are in S phase and mRNA levels are maximal, the half-life of topoisomerase IIalpha mRNA was determined to be approximately 30 min. A similar decrease in mRNA stability was also induced by two external factors known to delay cell cycle progression. Treatment of S-phase cells, at the time of maximum topoisomerase IIalpha mRNA stability, with either ionizing radiation (5 Gy) or heat shock (45 degrees C for 15 min) caused the accumulated topoisomerase IIalpha mRNA to decay. This finding suggests a potential relationship between stress-induced decreases in topoisomerase IIalpha expression and cell cycle progression delays in late S/G2.  相似文献   

15.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

16.
Early indicators of apoptosis in mammalian cells are membrane potential breakdown (loss) in mitochondria (MPLM), chromatin condensation, DNA degradation, and phosphatidylserine exposure (PSE) on the outside plasma membrane. One aim of the present study was to determine the kinetics of these characteristics. These changes were measured by flow cytometry using the following methods: membrane potential of mitochondria was analysed using Mito Tracker Green and Red, PSE was analysed using annexin-V-FITC staining simultaneously with propidium iodide (PI) to detect membrane permeability; chromatin condensation was measured using the acid denaturation Acridine Orange (AO) method; DNA degradation was studied by the sub G1 method and the terminal transferase dUTP nick end-labelling (TUNEL) assay (labelling of strand breaks). HL-60 cells were induced to apoptosis by 3% ethanol and 1.5 microM camptothecin (CAM) and the kinetics of the apoptotic cells were measured. The same kinetics were found for chromatin condensation and DNA degradation indicating that these changes appeared at approximately the same time after induction. The MPLM and PSE kinetics showed a considerably later increase indicating that MPLM occurred downstream of DNA degradation and that plasma membrane changes occurred downstream of MPLM. The main aim of the study was to follow the fate of apoptotic cells after the appearance of the initial characteristics. The lifetime of apoptotic cells was studied by chase experiments. The inducing drug was removed after 4 h treatment and the disappearance of apoptoses recorded. An exponential decay was measured with a half life (T(1/2)) of 17.8 h. As a corollary from these experiments, camptothecin was found to induce apoptosis also in G1 and G2 phase cells, however, it took much longer to occur than in S phase cells. Using labelling of the plasma membrane with a fluorescent cell membrane linker, it was possible to show that the majority of apoptotic bodies as well as condensed apoptotic cells contain DNA and membrane. The degradation of these apoptotic bodies follows similar kinetics as those of the condensed apoptotic cells. The membrane remained considerably stable, there was no further loss in the next 7 days, after the first day when the apoptotic characteristics develop. It is concluded that the apoptosis programme is completed within a day and no further steps follow.  相似文献   

17.
Human glioblastoma-derived cell line, T98G, is arrested in the G1 phase of the cell cycle when serum is deprived. Using this cell line, we investigated the relation between the cell cycle and DNA single-stranded breaks, "nicks," by an in situ nick-translation method. When T98G cells were cultured without serum for 60 h, many small cells with condensed chromatin and scanty cytoplasm appeared. These small cells that were immunohistochemically considered to be in the G0 or early G1 phase had many nicks in DNA. When serum was added, these small cells with nicks disappeared within 1 to 4 h. VP-16, a DNA topoisomerase II inhibitor, delayed the disappearance of these small cells with nicks. This indicated that the action of DNA topoisomerase II on the chromatin is required to repair nicks in T98G glioma cells and to promote the progression from the quiescent to the proliferating phase.  相似文献   

18.
DNA damaging agents, including those used in the clinic, activate cell cycle checkpoints, which blocks entry into mitosis. Given that checkpoint override results in cell death via mitotic catastrophe, inhibitors of the DNA damage checkpoint are actively being pursued as chemosensitization agents. Here we explored the effects of gemcitabine in combination with Chk1 inhibitors in a panel of pancreatic cancer cell lines and found variable abilities to override the S phase checkpoint. In cells that were able to enter mitosis, the chromatin was extensively fragmented, as assessed by metaphase spreads and Comet assay. Notably, electron microscopy and high-resolution light microscopy showed that the kinetochores and centromeres appeared to be detached from the chromatin mass, in a manner reminiscent of mitosis with unreplicated genomes (MUGs). Cell lines that were unable to override the S phase checkpoint were able to override a G2 arrest induced by the alkylator MMS or the topoisomerase II inhibitors doxorubicin or etoposide. Interestingly, checkpoint override from the topoisomerase II inhibitors generated fragmented kinetochores (MUGs) due to unreplicated centromeres. Our studies show that kinetochore and centromere fragmentation is a defining feature of checkpoint override and suggests that loss of cell viability is due in part to acentric genomes. Furthermore, given the greater efficacy of forcing cells into premature mitosis from topoisomerase II-mediated arrest as compared with gemcitabine-mediated arrest, topoisomerase II inhibitors maybe more suitable when used in combination with checkpoint inhibitors.  相似文献   

19.
We have used C3H 10T1/2 cells to examine the regulation of topoisomerase activities during cell proliferation and the cell cycle. The specific activity of topoisomerase I was about 4-fold greater in proliferating (log phase) cells than in non-proliferating (confluent) cells. In synchronized cells, the bulk of the increased activity occurred during or just prior to S phase, depending upon the method of synchronization. A smaller increase in activity also occurred during G1 phase. The increase in activity during S phase was not altered by a hydroxyurea block at the G1/S phase boundary indicating that it is not directly coupled to DNA synthesis and is not the result of topoisomerase I gene dosage. The increase was inhibited by blocking cells at mid-G1 phase using isoleucine deprivation. Thus, the increase in activity during S phase is dependent on events occurring during mid- to late G1 phase. In contrast to the changes in topoisomerase I levels, the specific activity of topoisomerase II showed no detectable difference in proliferating vs non-proliferating cells. In addition, no detectable difference in topoisomerase II specific activity was seen in G1, S and M phases of the cell cycle. The differences in the activity profiles of the topoisomerases I and II during the cell cycle suggest that the two activities are regulated independently and may be required for different functions.  相似文献   

20.
CHO cells were grown in the presence of 1 M CdCl2 and subjected to ATP-dependent replicative DNA synthesis after permeabilization. By decreasing the density of the cell culture replicative DNA synthesis was diminishing. At higher than 2 × 106 cell/ml concentration Cd had virtually no effect on the rate of DNA replication. Growth at higher cell concentrations could be supressed by increasing Cd concentration. After Cd treatment cells were synchronized by counterflow centrifugal elutriation. Cadmium toxicity on cell growth in early and mid S phase led to the accumulation of enlarged cells in late S phase. Flow cytometry showed increased cellular and nuclear sizes after Cd treatment. As the cells progressed through the S phase, 11 subpopulations of nuclear sizes were distinguished. Apoptotic chromatin changes were visualized by fluorescent microscopy in a cell cycle dependent manner. In the control untreated cells the main transitory forms of chromatin corresponded to those we have published earlier (veil-like, supercoiled chromatin, fibrous, ribboned structures, chromatin strings, elongated prechromosomes, precondensed chromosomes). Cadmium treatment caused: (a) the absence of decondensed veil-like structures and premature chromatin condensation in the form of apoptotic bodies in early S phase (2.2–2.4 average C-value), (b) the absence of fibrous structures, the lack of supercoiled chromatin, the appearance of uncoiled ribboned chromatin and perichromatin semicircles, in early mid S phase (2.5–2.9 C), (c) the presence of perichromatin fibrils and chromatin bodies in mid S phase (2.9–3.2 C), (d) early intra-nuclear inclusions, elongated forms of premature chromosomes, the extrusion and rupture of nuclear membrane later in mid S phase (3.3–3.4 C), (e) the exclusion of chromatin bodies and the formation of clusters of large-sized perichromatin granules in late S phase (3.5–3.8 C) and (f) large extensive disruptions and holes in the nuclear membrane and the clumping of incompletely folded chromosomes (3.8–4. C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号