首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antisera against purified acetylcholine receptors from the electric tissues of Torpedo californica and of Electrophorus electricus were raised in rabbits. The antisera contain antibodies which bind to both autologous and heterologous receptors in solution as shown by an immunoprecipitation assay. Antibodies in both types of antisera bind specifically to the postjunctional membrane on the innervated surface of the intact electroplax from Electrophorus electric tissue as demonstrated by an indirect immunohistochemical procedure using horseradish peroxidase conjugated to anti-rabbit IgG. Only anti-Electrophorus receptor antisera, however, cause inhibition of the receptor-mediated depolarization of the intact Electrophorus electroplax. The lack of inhibition by anti-Torpedo receptor antibodies, which do bind, suggests that the receptor does not undergo extensive movement during activity. The binding of anti-Torpedo antibodies to receptor-rich vesicles prepared by subcellular fractionation of Torpedo electric tissue was demonstrated by both direct and indirect immunohistochemical methods using ferritin conjugates. These vesicles can be conveniently collected and prepared for electron microscopy on Millipore filters, a procedure requiring only 25 micrograms of membrane protein per filter. In addition, it was possible to visualize the binding of anti-Torpedo receptor antibodies directly, without ferritin. These anti-Torpedo receptor antibodies, however, do not inhibit the binding of acetylcholine or of alpha-neurotoxin to receptor in Torpedo microsacs but do inhibit binding of alpha-neurotoxin to Torpedo receptor in Triton X-100 solution. It is likely that the principal antigenic determinants on receptor are at sites other than the acetylcholine-binding sites and that inhibition of receptor function, when it occurs, may be due to a stabilization by antibody binding of an inactive conformational state.  相似文献   

2.
Studies were conducted on the properties of 125I-labeled alpha-bungarotoxin binding sites on cellular membrane fragments derived from the PC12 rat pheochromocytoma. Two classes of specific toxin binding sites are present at approximately equal densities (50 fmol/mg of membrane protein) and are characterized by apparent dissociation constants of 3 and 60 nM. Nicotine and d-tubocurarine are among the most potent inhibitors of high-affinity toxin binding. The affinity of high-affinity toxin binding sites for nicotinic cholinergic agonists is reversibly or irreversibly decreased, respectively, on treatment with dithiothreitol or dithiothreitol and N-ethylmaleimide. The nicotinic receptor affinity reagent bromoacetylcholine irreversibly blocks high-affinity toxin binding to PC12 cell membranes that have been treated with dithiothreitol. Two polyclonal antisera raised against the nicotinic acetylcholine receptor from Electrophorus electricus inhibit high-affinity toxin binding. These detailed studies confirm that curaremimetic neurotoxin binding sites on the PC12 cell line are comparable to toxin binding sites from neural tissues and to nicotinic acetylcholine receptors from the periphery. Because toxin binding sites are recognized by anti-nicotinic receptor antibodies, the possibility remains that they are functionally analogous to nicotinic receptors.  相似文献   

3.
Polyclonal rabbit antibodies were raised against 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS), an inhibitor of a variety of anion transport proteins. These antibodies specifically recognize SITS-reacted erythrocyte band 3 in immunoprecipitations and Western blots. In Western blots of SITS-reacted membrane proteins derived from vesicles of the electric organ of Torpedo californica (known to express a SITS-sensitive Cl- channel) the antibodies recognized two major species of approximately 93 kDa and approximately 105 kDa. The approximately 93 kDa protein was identified as the alpha-subunit of the Na,K-ATPase. The approximately 105 kDa protein (designated sp105) is a glycoprotein which binds to wheat-germ agglutinin and concanavalin A and is present as a disulphide-linked homodimer under non-reducing conditions. A partial amino acid sequence and a polyclonal antibody were used to clone the corresponding cDNA. sp105 is encoded in electroplax by two abundant mRNAs of approximately 6 and approximately 6.8 kb. A hybridizing mRNA of approximately 5 kb was over 200-fold and over 500-fold less abundant in brain and heart respectively. Sequence analysis of the cDNA predicted a novel protein of 697 amino acids containing eight potential N-linked glycosylation sites. Analysis of hydrophobicity indicated the presence of at least one, and possibly three, putative membrane-spanning domains. When expressed from the Sp6 message in Xenopus laevis oocytes, the protein was inserted into membranes, glycosylated and processed to form a dimer. However, no increase in 36Cl uptake or in membrane conductance could be detected. We found no effect of hybrid depleting the specific message on expression of the Torpedo electroplax Cl- channel in oocytes. Thus we conclude that this novel electroplax membrane protein is probably not a functional part of the chloride channel.  相似文献   

4.
The purified Na+ channel from rat brain consists of alpha (260 kDa), beta 1 (36 kDa), and beta 2 (33 kDa) subunits. Pure beta 1 subunits were prepared from purified rat brain Na+ channels which had been adsorbed to hydroxylapatite resin and used to prepare specific anti-beta 1 subunit antiserum. Antibodies purified from this antiserum by antigen affinity chromatography immunoprecipitate 125I-labeled, purified beta 1 subunits and purified Na+ channels (measured as high affinity [3H] saxitoxin binding sites) and recognize beta 1 subunits on immunoblots of solubilized rat brain membranes. The affinity-purified anti-beta 1 antibodies recognize beta 1 subunits in rat spinal cord, heart, skeletal muscle, and sciatic nerve, but do not detect immunoreactive beta 1 subunits in eel electroplax or eel brain. The developmental time course of expression of immunoreactive beta 1 subunits in rat forebrain was measured by immunoprecipitation followed by immunoblotting with affinity-purified anti-beta 1 antibodies. The amount of immunoreactive beta 1 subunits increased steadily to adult levels during the first 21 days of postnatal development.  相似文献   

5.
《The Journal of cell biology》1989,109(4):1753-1764
To identify proteins associated with nicotinic postsynaptic membranes, mAbs have been prepared to proteins extracted by alkaline pH or lithium diiodosalicylate from acetylcholine receptor-rich (AChR) membranes of Torpedo electric organ. Antibodies were obtained that recognized two novel proteins of 87,000 Mr and a 210,000:220,000 doublet as well as previously described proteins of 43,000 Mr, 58,000 (51,000 in our gel system), 270,000, and 37,000 (calelectrin). The 87-kD protein copurified with acetylcholine receptors and with 43- and 51-kD proteins during equilibrium centrifugation on continuous sucrose gradients, whereas a large fraction of the 210/220-kD protein was separated from AChRs. The 87-kD protein remained associated with receptors and 43-kD protein during velocity sedimentation through shallow sucrose gradients, a procedure that separated a significant amount of 51-kD protein from AChRs. The 87- and 270-kD proteins were cleaved by Ca++- activated proteases present in crude preparations and also in highly purified postsynaptic membranes. With the exception of anti-37-kD antibodies, some of the monoclonals raised against Torpedo proteins also recognized determinants in frozen sections of chick and/or rat skeletal muscle fibers and in permeabilized chick myotubes grown in vitro. Anti-87-kD sites were concentrated at chick and rat endplates, but the antibodies also recognized determinants present at lower site density in the extrasynaptic membrane. Anti-210:220-kD labeled chick endplates, but studies of neuron-myotube cocultures showed that this antigen was located on neurites rather than the postsynaptic membrane. As reported in other species, 43-kD determinants were restricted to chick endplates and anti-51-kD and anti-270-kD labeled extrasynaptic as well as synaptic membranes. None of the cross reacting antibodies recognized determinants on intact (unpermeabilized) myotubes, so the antigens must be located on the cytoplasmic aspect of the surface membrane. The role that each intracellular determinant plays in AChR immobilization at developing and mature endplates remains to be investigated.  相似文献   

6.
Polyclonal antibodies were raised against a purified opioid receptor from bovine brain (Cho, et. al., 1986), and shown to inhibit 3H-diprenorphine binding to this receptor in a dose-dependent fashion. These antibodies were then used to characterize opioid-binding material present in rat brain and in NG108-15 neuroblastoma-glioma hybrid cells. Western blot analysis revealed that the antibodies reacted with a single species of 58,000 molecular weight in rat brain membranes; this closely corresponds in size to the bovine opioid receptor used to raise the antibodies. In contrast, the polyclonal antibodies reacted with a 45,000 molecular weight species in NG108-15 neuroblastoma-glioma hybrid cells; moreover, this band was specifically reduced in NG108-15 cells in which opioid receptors had been down-regulated by incubation with D-ala2-D-leu5-enkephalin for 24 hours. Thus at least two distinct opioid receptor molecules have been identified, which have antigenic similarities.  相似文献   

7.
J Lindstrom  B Walter  B Einarson 《Biochemistry》1979,18(21):4470-4480
Polypeptide chains composing acetylcholine receptors from the electric organs of Torpedo californica and Electrophorus electricus were purified and labeled with 125I. Immunochemical studies with these labeled chains showed that receptor from Electrophorus is composed of three chains corresponding to the alpha, beta, and gamma chains of receptor from Torpedo but lacks a chain corresponding to the delta chain of Torpedo. Experiments suggest that receptor from mammalian muscle contains four groups of antigenic determinants corresponding to all four of the Torpedo chains. Binding of 125I-labeled chains was measured by quantitative immune precipitation and electrophoresis. Antisera to the following immunogens were used: denatured alpha, beta, gamma, and delta chains of Torpedo receptor, native receptor from Torpedo and Electrophorus electric organs and from rat and fetal calf muscle, and human muscle receptor (from autoantisera of patients with myasthenia gravis). The four chains of Torpedo receptor were immunologically distinct from one another and from higher molecular weight chains found in electric organ membranes. Antibodies to these chains reacted very efficiently with native Torpedo receptor, but the reverse was not true. Antibodies to native receptor from Torpedo and Electrophorus reacted slightly with each of the chains of the corresponding receptor. However, cross-reaction between chains and antibodies to any native receptor was most obviuos with the alpha chain of Torpedo or the corresponding alpha' chain of Electrophorus. Antiserum to alpha chains exhibited higher titer aginst receptor from denervated rat muscle. Antibodies from myasthenia gravis patients did not cross-react detectably with 125I-labeled chains from electric organ receptors. Most interspecies cross-reaction occurred at conformationally dependent determinants whose subunit localization could not be determined by reaction with the denatured chains.  相似文献   

8.
D Watters  A Maelicke 《Biochemistry》1983,22(8):1811-1819
We have studied 20 monoclonal antibodies directed against both the solubilized and the membrane-bound receptor from Torpedo marmorata. We find the following: (i) Six of the antibodies compete with cholinergic ligands for receptor binding and, hence, are directed against the ligand binding regions. (ii) Of these six antibodies, two cross-react with receptor from Electrophorus electricus, rat myotubes, and chicken sympathetic ganglia. These two antibodies therefore define a preserved structure within the ligand binding regions. The other four antibodies bind to structures not common between the receptor preparations tested. (iii) From competition binding studies using internally 3H-labeled antibodies, nine nonoverlapping antigenic regions were defined at the surface of the receptor. Three of these regions overlap with the ligand binding regions. Since two of these three regions do not overlap with each other, two structurally distinct ligand binding regions must exist at the receptor. (iv) From competition binding studies with representative cholinergic ligands, the antibodies directed against the ligand binding regions can be subdivided into three groups: one group competes with all ligands tested; the second group competes with all ligands except the bismethonium compounds; the third group competes with all ligands except the bismethonium compounds and tubocurarine. The results are summarized in a model of the organization of ligand binding sites at the receptor: There are two ligand binding regions differing in their antigenic properties. Furthermore, either there exists separate sites for distinct groups of ligands within each of these binding regions or some ligands produce conformational changes of the receptor that reversibly abolish some antigenic sites. In any case, the cholinergic ligands must interact with the receptor by more and/or other structural determinants than are provided by the structure of acetylcholine.  相似文献   

9.
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.  相似文献   

10.
A preparation of purified 125I-labelled acetylcholine receptor was shown to bind to concanavalin A and to be totally bound by rabbit antiserum to Torpedo acetylcholine receptor. Pre-incubation of the receptor with F(ab')2 and Fab fragments from antibodies against Torpedo acetylcholine receptor, or with corresponding fragments from control immunoglobulin G showed that subsequent binding of the receptor to concanavalin A was specifically inhibited to a maximum of approximately 25% by the immune fragments. Treatment of acetylcholine receptor with periodate or with glycosidases apparently destroyed or removed carbohydrate residues without affecting the antigenicity of the receptor as assessed by radioimmunoassay. These results suggest that although there is a steric interrelatonship between the antigenic and concanavalin-A-binding sites of the receptor the latter sites do not contain its major antigenic determinants.  相似文献   

11.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   

12.
Polyclonal antisera raised against solubilized and purified nicotinic acetylcholine receptor (nAcChoR) from Electrophorus electroplax and a polyclonal anti-alpha-bungarotoxin antiserum have been studied by the use of four different radioimmunoassay protocols. The results indicate unique sensitivities of different assay techniques in analysis of antibody-antigen interactions, and serve as a model for immunological study of other integral membrane proteins.  相似文献   

13.
Summary To obtain more accurate information on the nephron-collecting duct system, monoclonal antibodies against renal tissue were prepared. BALB/c mice were immunized every two weeks with rat renal tissue, either cortex or medulla. Spleen cells were collected and fused with myeloma cells sensitive to hypoxanthine-aminopterin-thymidine medium. Hybrids were selected for production of antibodies by indirect immunofluorescence and cloned by the limiting dilution method. Tissue reactivity of the antibodies obtained was defined by immunofluorescence. The intracellular localization of antigenic determinants was ascertained by immunoelectron microscopy. The antibodies were classified into four major groups: (1) antibodies against proximal tubules; (2) antibodies against distal tubules and the loop of Henle; (3) antibodies against collecting duct system; and (4) antibodies against glomeruli. Using immunoelectron microscopy, various intracellular antigenic determinants were recognized, such as brush border, apical canaliculi, vacuolar apparatus, luminal and basolateral plasma membranes. The results obtained indicated that electron microscopy is indispensable for the immunohistological study of the nephroncollecting duct system. The observations help to understand morphological and functional diversity of the nephron-collecting duct system.  相似文献   

14.
Biochemical characterization of the Tityus gamma toxin receptor associated with the voltage-sensitive Na+ channel was carried out in different tissue preparations with the use of an iodinated toxin derivative. The affinity of the toxin for the receptor is high with a dissociation constant of 4 X 10(-12) M for rat synaptosomes. The density of binding sites is in the range of 0.3 to 2 pmol/mg of protein. Toxin gamma does not seem to bind to Na+ channels located on transverse-tubule membranes of skeletal muscle, but only to Na+ channels located on the sarcolemma. Both affinity labelling and radiation inactivation analysis indicate a molecular weight for the toxin receptor of 270 000 daltons. The same molecular weight is found using the tetrodotoxin. Only one single major protein component of the Na+ channel was purified from Electrophorus electroplax, rat brain membranes and chick heart membrane using the toxin gamma as a marker. The molecular weight of this component is 230 000-270 000 daltons. Reconstitution of the purified Na+ channel into planar lipid bilayers has been carried out. Two different types of electrically excitable channels with conductances of 150 and 25 pS were detected. The activity of both channels is blocked by saxitoxin.  相似文献   

15.
The nicotinic acetylcholine receptor from Torpedo marmorata was extracted and purified from the electroplax membranes by using both aqueous detergent (proteodetergent) or chloroform-methanol (proteolipid). When studied with a highly sensitive radioimmunoassay, it was found that both proteins do not cross-react immunologically against an antireceptor antiserum prepared with the proteodetergent. Treatment with organic solvents of the electroplax membranes, as well as of the proteodetergent receptor purified by affinity chromatography, impaired the radioimmunoassay. This suggests that the antigenicity has been affected by the change in solvent polarity, even though both proteins have similar binding properties for cholinergic ligands. These findings do not allow a simple immunological comparison between the cholinergic proteodetergent and the proteolipid as previously stated in the literature.  相似文献   

16.
Monoclonal antibodies against rabbit or porcine zonae pellucidae (ZP) demonstrate species-specific and shared antigenic determinants. In addition, these antibodies are used to characterize the biochemical nature of these determinants. All of six monoclonal antibodies developed against porcine ZP react with porcine but not with rabbit ZP. Only one of seven monoclonal antibodies developed against rabbit ZP cross-reacts with porcine ZP. None of these antibodies recognized antigens associated with other tissues tested. High-resolution, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) followed by immunoblotting was used to demonstrate that the cross-reactive antibody recognizes an antigenic determinant which is associated with the major low molecular weight glycoprotein of both the pig and rabbit ZP. Since this antibody recognizes all charge species of this glycoprotein, it is apparent that the antigenic determinant recognized by this antibody involves protein. Further studies demonstrate that proteolytic digestion of ZP will destroy the antigenic determinant while glycosidic digestion of ZP has no effect on antibody binding. Although polyclonal antibodies to this glycoprotein inhibit sperm from binding to the zona pellucida, this monoclonal antibody does not affect sperm binding. None of the species-specific antibodies recognize ZP glycoproteins following 2D-PAGE. This is a property typical of antibodies directed against conformational antigenic determinants. The presence of common as well as unique zona antigenic determinants could explain why ZP proteins induce heteroantibodies which result in infertility while alloimmunization has no effect on fertility.  相似文献   

17.
Polyclonal rabbit antibodies raised against the globular domain NC1 of collagen IV from human placenta and a mouse tumor react with conformational antigenic determinants present on the NC1 hexamers and also with the three major subunits obtained after dissociation. The antibodies recognized unique structures within basement membranes and showed a broad tissue reactivity but only limited species cross-reactivity. Using these antibodies, it was possible to detect small amounts of collagen IV antigens from cell cultures and in serum. Monoclonal rat antibodies against mouse NC1 revealed a similar reaction potential. Autoantibodies could be produced in mice against mouse NC1 which react with kidney and lung basement membranes in a pathological manner, mimicking Goodpasture syndrome.  相似文献   

18.
Monoclonal antibodies have been prepared against omega-conotoxin GVI A, a peptide isolated from marine snails of the genus Conus (Conus geographus and Conus magus). This toxin is a blocker of select presynaptic Ca2+ channels in the central nervous system. Antigenic omega-conotoxin GVI A was synthesized as a covalent conjugate with bovine serum albumin and injected s.c. An ELISA assay combined with a competitive inhibition assay was used to select and characterize monoclonal antibodies able to recognize and bind the free toxin. Several of the antibodies were found to block omega-conotoxin GVI A inhibition of 45Ca transport into rat brain synaptosomes and to block omega-conotoxin GVI A binding to membranes from the same preparation. The antibodies recognize native, synthetic toxin, and are useful for analysis of toxin in biological fluids.  相似文献   

19.
Two different monoclonal antibodies, characterized initially as binding synaptic terminal regions of rat brain, bind a 65,000-dalton protein, which is exposed on the outer surface of brain synaptic vesicles. Immunocytochemical experiments at the electron microscope level demonstrate that these antibodies bind the vesicles in many different types of nerve terminals. The antibodies have been used successfully to purify synaptic vesicles from crude brain homogenates by immunoprecipitation onto the surface of polyacrylamide beads. The profiles of the structures precipitated by these beads are almost exclusively vesicular, confirming the vesicle-specificity of the antibodies. In SDS gels, the antibodies bind a single protein of 65,000 daltons. The two antibodies are not identical, but compete for binding sites on this protein. Immune competition experiments also demonstrate that the antigenic components on the 65,000-dalton protein are widely distributed in neuronal and neural secretory tissues. Detectable antigen is not found in uninnervated tissue--blood cells and extrajunctional muscle. Low levels are found in nonneural secretory tissues; it is not certain whether this reflects the presence of low amounts of the antigen on all the exocytotic vesicles in these tissues or whether the antigen is found only in neuronal fibers within these tissues. The molecular weight and at least two antigenic determinants of the 65,000-dalton protein are highly conserved throughout vertebrate phylogeny. The two antibodies recognize a 65,000-dalton protein present in shark, amphibia, birds, and mammals. The highly conserved nature of the determinants on this protein and their specific localization on secretory vesicles of many different types suggest that this protein may be essential for the normal function of neuronal secretory vesicles.  相似文献   

20.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号