首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Kubota  R Furuta  M Maki    M Hatanaka 《Journal of virology》1992,66(4):2510-2513
A nonfunctional mutant of human immunodeficiency virus type 1 Rev was created by deleting seven amino acid residues within the nucleolar targeting signal. This mutant Rev remained in the cytoplasm in expressed cells and strongly inhibited the function of Rev by interfering with the nuclear/nucleolar localization of coexpressed Rev. These findings strongly suggest the multimerization of Rev in the cytoplasm before migration to the nucleus/nucleolus, where wild-type Rev functions as a trans-regulator.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV) Rev protein is thought to be involved in the export of unspliced or singly spliced viral mRNAs from the nucleus to the cytoplasm. This function is mediated by a sequence-specific interaction with a cis-acting RNA element, the Rev response element (RRE), present in these intron-containing RNAs. To identify possible host proteins involved in Rev function, we fractionated nuclear cell extracts with a Rev affinity column. A single, tightly associated Rev-binding protein was identified; this protein is the mammalian nucleolar protein B23. The interaction between HIV Rev and B23 is very specific, as it was observed in complex cell extracts. The complex is also very stable toward dissociation by high salt concentrations. Despite the stability of the Rev-B23 protein complex, the addition of RRE, but not control RNA, led to the displacement of B23 and the formation of a specific Rev-RRE complex. The mammalian nucleolar protein B23 or its amphibian counterpart No38 is believed to function as a shuttle receptor for the nuclear import of ribosomal proteins. B23 may also serve as a shuttle for the import of HIV Rev from the cytoplasm into the nucleus or nucleolus to allow further rounds of export of RRE-containing viral RNAs.  相似文献   

3.
The Rev proteins of the human immunodeficiency virus (HIV) are necessary for expression of viral structural gene products. Site-directed mutations were made within the HIV-2 rev gene to identify functional domains. We observed that similar to HIV-1 Rev, the HIV-2 Rev protein was phosphorylated, albeit to a much lesser extent than was HIV-1 Rev. We also found that like HIV-1 Rev, HIV-2 Rev localized to the nucleus, with a marked accumulation in the nucleolus. Mutations within a stretch of basic residues prevented both nuclear and nucleolar localization. Furthermore, mutant Rev proteins able to localize in the nucleus but unable to localize in the nucleolus were nonfunctional.  相似文献   

4.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

5.
6.
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

8.
The ins and outs of HIV Rev.   总被引:13,自引:0,他引:13  
The Rev protein of the human immunodeficiency virus mediates the nuclear export of the intron-containing viral messages. This export is a consequence of the continuous shuttling of HIV Rev between the nucleus and cytoplasm. This shuttling is mediated by a nuclear localization signal and a nuclear export signal contained within Rev. Recently, several factors which are required for the movement of Rev through the nuclear pore have been identified. This review will focus on these factors and their role the nucleocytoplasmic shuttling of HIV Rev.  相似文献   

9.
10.
The human immunodeficiency virus type 1 Rev trans activator binds directly to unspliced viral mRNA in the nucleus and activates its transport to the cytoplasm. In additon to the sequences that confer RNA binding and nuclear localization, Rev has a carboxy-terminal region, the activation domain, whose integrity is essential for biological activity. Because it has been established that Rev constitutively exits and reenters the nucleus and that the activation domain is required for nuclear exit, it has been proposed that Rev's activation domain is a nuclear export signal (NES). Here, we used microinjection-based assays to demonstrate that the activation domain of human immunodeficiency virus type 1 Rev imparts rapid nuclear export after its transfer to heterologous substrates. NES- mediated export is specific, as it is sensitive both to inactivation by missense mutation and to selective inhibition by an excess of the wild-type, but not mutant, activation domain peptide. Examination of the Rev trans activators of two nonprimate lentiviruses, visna virus and equine infectious anemia virus, revealed that their activation domains are also potent NESs. Taken together, these data demonstrate that nuclear export can be determined by positively acting peptide motifs, namely, NESs, and suggest that Rev proteins activate viral RNA transport by providing export ribonucleoproteins with specific information that targets them to the cytoplasm.  相似文献   

11.
Cheng G  Brett ME  He B 《Journal of virology》2002,76(18):9434-9445
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) is required for viral neurovirulence in vivo. In infected cells, this viral protein prevents the shutoff of protein synthesis mediated by double-stranded-RNA-dependent protein kinase PKR. This is accomplished by recruiting protein phosphatase 1 to dephosphorylate the alpha subunit of translation initiation factor eIF-2 (eIF-2 alpha). Moreover, the gamma(1)34.5 protein is implicated in viral egress and interacts with proliferating cell nuclear antigen. In this report, we show that the gamma(1)34.5 protein encoded by HSV-1(F) is distributed in the nucleus, nucleolus, and cytoplasm in transfected or superinfected cells. Deletion analysis revealed that the Arg-rich cluster from amino acids 1 to 16 in the gamma(1)34.5 protein functions as a nucleolar localization signal. The region from amino acids 208 to 236, containing a bipartite basic amino acid cluster, is able to mediate nuclear localization. R(215)A and R(216)A substitutions in the bipartite motif disrupt this activity. Intriguingly, leptomycin B, an inhibitor of nuclear export, blocks the cytoplasmic accumulation of the gamma(1)34.5 protein. L(134)A and L(136)A substitutions in the leucine-rich motif completely excluded the gamma(1)34.5 protein from the cytoplasm. These results suggest that the gamma(1)34.5 protein continuously shuttles between the nucleus, nucleolus, and cytoplasm, which may be a requirement for the different activities of the gamma(1)34.5 protein in virus-infected cells.  相似文献   

12.
H Siomi  H Shida  M Maki    M Hatanaka 《Journal of virology》1990,64(4):1803-1807
Human immunodeficiency virus type 1 encodes a positive trans-activator protein, Tat, which is located predominantly in the cell nucleolus. To study the role of the basic region of Tat in nucleolar localization, we constructed fusion genes encoding serially deleted segments of Tat joined to the amino-terminal end of the Escherichia coli beta-galactosidase molecule. We show that the basic region of Tat was sufficient for nuclear localization but not for nucleolar localization. Addition of three amino acids (59, 60, and 61) of the Tat sequence at the C-terminal end of the basic region was necessary for the chimeric beta-galactosidase to localize in the nucleus as well as in the nucleolus. We demonstrate that a short amino acid sequence (G-48 RKKRRQRRRA HQ N-61), when fused to the amino terminus of beta-galactosidase, can act as a nucleolar localization signal.  相似文献   

13.
LIM kinases (LIMKs) regulate actin dynamics through cofilin phosphorylation and also have a function in the nucleus. Recently we have shown that LIMK2 shuttles between cytoplasm and nucleus in endothelial cells and that nuclear import is inhibited by protein kinase C-mediated phosphorylation of Ser-283. Here we aimed to identify the structural features of LIMK2 responsible for nuclear import. We found that the kinase domain of LIMK2 is localized exclusively in the nucleus and, in contrast to the kinase domain of LIMK1, it accumulated in the nucleolus. Through site-directed mutagenesis, we identified the basic amino acid-rich motif KKRTLRKNDRKKR (amino acids 491-503) as the functional nuclear and nucleolar localization signal of LIMK2. After fusing this motif to enhanced green fluorescent protein, the fusion protein localized exclusively in the nucleus and nucleolus. Mutagenesis studies showed that phosphorylation of Thr-494, a putative protein kinase C phosphorylation site identified within the nuclear localization signal, inhibits nuclear import of the enhanced green fluorescent protein-PDZ kinase domain of LIMK2. After inhibiting nuclear export with leptomycin B, phosphorylation of either Ser-283 or Thr-494 reduced the nuclear import of LIMK2. Phosphorylation of both Ser-283 and Thr-494 sites inhibited nuclear import completely. Our findings identify a unique basic amino acid-rich motif (amino acids 491-503) in LIMK2 which is not present in LIMK1 that serves to target the protein not only to the nucleus but also to the nucleolus. Phosphorylation of Thr-494 within this motif negatively regulates nuclear import of LIMK2.  相似文献   

14.
Members of high (22-, 22.5-, 24-, and 34-kDa) and low (18-kDa) molecular mass forms of fibroblast growth factor-2 (FGF-2) regulate cell proliferation, differentiation, and migration. FGF-2s have been previously shown to accumulate in the nucleus and nucleolus. Although high molecular weight forms of FGF-2 contain at least one nuclear localization signal (NLS) in their N-terminal extension, the 18-kDa FGF-2 does not contain a standard NLS. To determine signals controlling the nuclear and subnuclear localization of the 18-kDa FGF-2, its full-length cDNA was fused to that of green fluorescent protein (GFP). The fusion protein was primarily localized to the nucleus of COS-7 and HeLa cells and accumulated in the nucleolus. The subcellular distribution was confirmed using wild type FGF-2 and FGF-2 tagged with a FLAG epitope. A 17-amino acid sequence containing two groups of basic amino acid residues separated by eight amino acid residues directed GFP and a GFP dimer into the nucleus. We systematically mutated the basic amino acid residues in this nonclassical NLS and determined the effect on nuclear and nucleolar accumulation of 18-kDa FGF-2. Lys(119) and Arg(129) are the key amino acid residues in both nuclear and nucleolar localization, whereas Lys(128) regulates only nucleolar localization of 18-kDa FGF-2. Together, these results demonstrate that the 18-kDa FGF-2 harbors a C-terminal nonclassical bipartite NLS, a portion of which also regulates its nucleolar localization.  相似文献   

15.
16.
Three human small nucleolar RNAs (snoRNAs), E1, E2 and E3, were reported earlier that have unique sequences, interact directly with unique segments of pre-rRNA in vivo and are encoded in introns of protein genes. In the present report, human and frog E1, E2 and E3 RNAs injected into the cytoplasm of frog oocytes migrated to the nucleus and specifically to the nucleolus. This indicates that the nucleolar and nuclear localization signals of these snoRNAs reside within their evolutionarily conserved segments. Homologs of these snoRNAs from several vertebrates were sequenced and this information was used to develop RNA secondary structure models. These snoRNAs have unique phylogenetically conserved sequences.  相似文献   

17.
In addition to virion formation, the coat protein (CP) of Alfalfa mosaic virus (AMV) is involved in the regulation of replication and translation of viral RNAs, and in cell-to-cell and systemic movement of the virus. An intriguing feature of the AMV CP is its nuclear and nucleolar accumulation. Here, we identify an N-terminal lysine-rich nucleolar localization signal (NoLS) in the AMV CP required to both enter the nucleus and accumulate in the nucleolus of infected cells, and a C-terminal leucine-rich domain which might function as a nuclear export signal. Moreover, we demonstrate that AMV CP interacts with importin-α, a component of the classical nuclear import pathway. A mutant AMV RNA 3 unable to target the nucleolus exhibited reduced plus-strand RNA synthesis and cell-to-cell spread. Moreover, virion formation and systemic movement were completely abolished in plants infected with this mutant. In vitro analysis demonstrated that specific lysine residues within the NoLS are also involved in modulating CP-RNA binding and CP dimerization, suggesting that the NoLS represents a multifunctional domain within the AMV CP. The observation that nuclear and nucleolar import signals mask RNA-binding properties of AMV CP, essential for viral replication and translation, supports a model in which viral expression is carefully modulated by a cytoplasmic/nuclear balance of CP accumulation.  相似文献   

18.
Ribosomal subunit assembly in the nucleolus is dependent on efficient targeting of ribosomal proteins (RPs) from the cytoplasm into the nucleus and nucleolus. Nuclear/nucleolar localization of a protein is generally mediated by one or more specific stretches of basic amino acids—nuclear/nucleolar localization signals (NLSs/NoLSs). Arabidopsis thaliana RPL23aA has eight putative NLSs/NoLSs (pNLSs/NoLSs). Here we mutated all eight NLS/NoLSs individually and in groups and showed, via transient expression in tobacco cells that nucleolar localization of RPL23aA was disrupted by mutation of various combinations of five or more pNLSs/NoLSs. Mutation of all eight pNLSs/NoLSs, a 50 % reduction in total basic charge of RPL23aA, resulted in a complete disruption of nucleolar localization, however, the protein can still localize to the nucleus. As no individual or specific combination of NoLSs was absolutely required for nucleolar localization, we suggest that nucleolar localization/retention of RPL23aA is dependent on the overall basic charge. In addition to the optimal basic charge conferred by these NoLSs, nucleolar localization/retention of RPL23aA also required a C-terminal putative 26S rRNA binding site. In contrast, in the RPs RPS8A and RPL15A, mutation of just two and three N-terminal pNLSs, respectively, disrupted both nuclear and nucleolar localization of these two RPs, indicating differential signal requirements for nuclear and nucleolar localization of the three Arabidopsis RPs RPL23aA, RPL15A and RPS8A.  相似文献   

19.
Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1), nucleophosmin (B23) and nucleolin (C23) from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.  相似文献   

20.
Y P Li 《Journal of virology》1997,71(5):4098-4102
Nucleolar shuttle protein B23 was found to bind to human immunodeficiency virus protein Tat, and this binding required the nucleolar localization motif of Tat. A fusion protein containing the B23 binding domain and beta-galactosidase caused mislocalization of Tat to the cytoplasm and inhibited the transactivation activity of Tat. These data suggest that B23 is a human factor necessary for the nucleolar localization of Tat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号