首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J D Chen  V Pirrotta 《The EMBO journal》1993,12(5):2075-2083
The Drosophila zeste protein forms multimeric species in vitro through its C-terminal domain. Multimerization is required for efficient binding to DNA containing multiple recognition sequences and increasing the number of binding sites stimulates binding in a cooperative manner. Mutants that can only form dimers still bind to a dimeric site, but with lower affinity. Mutations or progressive deletions from the C-terminal show that when even dimer formation is prevented, DNA-binding activity is lost. Surprisingly, binding activity is regained with larger deletions that leave only the DNA-binding domain. Additional protein sequences apparently inhibit DNA binding unless they permit multimerization. The DNA-binding domain peptides bind strongly even to isolated recognition sequences and they bind as monomers. The ability of various zeste peptides to stimulate white gene expression in vivo shows that multimeric forms are the functional species of the zeste product in vivo. The DNA-binding domain peptide binds well to DNA in vitro, but it cannot stimulate white gene expression in vivo. This failure may reflect the need for an activation domain or it may be caused by indiscriminate binding of this peptide to non-functional isolated sites. Multimerization increases binding specificity, selecting only sites with multiple recognition sequences.  相似文献   

2.
Using a binding site selection procedure, we have found that sequence-specific DNA-binding by the mouse c-myb protein involves recognition of nucleotides outside of the previously identified hexanucleotide motif. Oligonucleotides containing a random nucleotide core were immunoprecipitated in association with c-Myb, amplified by the Polymerase Chain Reaction and cloned in plasmids prior to sequencing. By alignment of sequences it was apparent that additional preferences existed at each of three bases immediately 5' of the hexanucleotide consensus, allowing an extension of the preferred binding site to YGRCVGTTR. The contributions of these 5' nucleotides to binding affinity was established in bandshift analyses with oligonucleotides containing single base substitutions; in particular, it was found that replacement of the preferred guanine at position -2 with any other base greatly reduced c-Myb binding. We found that the protein encoded by the related B-myb gene bound the preferred c-Myb site with similar affinity; however, B-Myb and c-Myb showed distinct preferences for the identity of the nucleotide at position -1 relative to the hexanucleotide consensus. This study demonstrates that the c-Myb DNA-binding site is more extensive than recognised hitherto and points to similar but distinct nucleotide preferences in recognition of DNA by related Myb proteins.  相似文献   

3.
4.
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.  相似文献   

5.
6.
MIG1 is a zinc finger protein that mediates glucose repression in the yeast Saccharomyces cerevisiae. MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins. It has two fingers and binds to a GCGGGG motif that resembles the GC boxes recognized by these mammalian proteins. We have performed a complete saturation mutagenesis of a natural MIG1 site in order to elucidate its binding specificity. We found that only three mutations within the GC box retain the ability to bind MIG1: G1 to C, C2 to T, and G5 to A. This result is consistent with current models for zinc finger-DNA binding, which assume that the sequence specificity is determined by base triplet recognition within the GC box. Surprisingly, we found that an AT-rich region 5' to the GC box also is important for MIG1 binding. This AT box is present in all natural MIG1 sites, and it is protected by MIG1 in DNase I footprints. However, the AT box differs from the GC box in that no single base within it is essential for binding. Instead, the AT-rich nature of this sequence seems to be crucial. The fact that AT-rich sequences are known to increase DNA flexibility prompted us to test whether MIG1 bends DNA. We found that binding of MIG1 is associated with bending within the AT box. We conclude that DNA binding by a simple zinc finger protein such as MIG1 can involve both recognition of the GC box and flanking sequence preferences that may reflect local DNA bendability.  相似文献   

7.
8.
To determine the sequence specificity of dimeric Ss-LrpB, a high resolution contact map was constructed and a saturation mutagenesis conducted on one half of the palindromic consensus box. Premodification binding interference indicates that Ss-LrpB establishes most of its tightest contacts with a single strand of two major groove segments and interacts with the minor groove at the center of the box. The requirement for bending is reflected in the preference for an A+T rich center and confirmed with C.G and C.I substitutions. The saturation mutagenesis indicates that major groove contacts with C.G at position 5 and its symmetrical counterpart are most critical for the specificity and strength of the interaction. Conservation at the remaining positions improved the binding. Hydrogen bonding to the O6 and N7 acceptor atoms of the G5' residue play a major role in complex formation. Unlike many other DNA-binding proteins Ss-LrpB does not establish hydrophobic interactions with the methyls of thymine residues. The binding energies determined from the saturation mutagenesis were used to construct a sequence logo, which pin-points the overwhelming importance of C.G at position 5. The knowledge of the DNA-binding specificity will constitute a precious tool for the search of new physiologically relevant binding sites for Ss-LrpB in the genome.  相似文献   

9.
10.
11.
Anderson EM  Halsey WA  Wuttke DS 《Biochemistry》2003,42(13):3751-3758
The essential Saccharomyces cerevisiae protein Cdc13 binds the conserved single-stranded overhang at the end of telomeres and mediates access of protein complexes involved in both end-capping and telomerase activity. The single-stranded DNA-binding domain (ssDBD) of Cdc13 exhibits both high affinity (K(d) of 3 pM) and sequence specificity for the GT-rich sequences present at yeast telomeres. We have used the ssDBD of Cdc13 to understand the sequence-specific recognition of extended single-stranded DNA (ssDNA). The recent structure of the Cdc13 DNA-binding domain revealed that ssDNA is recognized by a large protein surface containing an oligonucleotide/oligosaccharide-binding fold (OB-fold) augmented by an extended 30-amino acid loop. Contacts to ssDNA occur via a contiguous surface of aromatic, hydrophobic, and basic residues. A complete alanine scan of the binding interface has been used to determine the contribution of each contacting side chain to binding affinity. Substitution of any aromatic or hydrophobic residue at the interface was deleterious to binding (20 to >700-fold decrease in binding affinity), while tolerance for replacement of basic residues was observed. The important aromatic and hydrophobic contacts are spread throughout the extended interface, indicating that the entire surface is both structurally and thermodynamically required for binding. While all of these contacts are important, several of the individual alanine substitutions that abolish binding cluster to one region of the protein surface. This region is vital for recognition of four bases at the 5' end of the DNA and constitutes a "hotspot" of binding affinity.  相似文献   

12.
J Chen  S Pongor    A Simoncsits 《Nucleic acids research》1997,25(11):2047-2054
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

13.
14.
15.
16.
Low salt extracts of chicken oviduct nuclei contain a DNA binding protein with high affinity for specific DNA sequences in the flanking regions of the chicken lysozyme gene. Two of the three binding sites found within a total of 11 kb upstream from the promoter are located only 92 bp apart from each other. Upon comparison of the DNA binding sites, the symmetrical consensus sequence 5'- TGGCANNNTGCCA -3' can be deduced as the protein recognition site. This sequence is the central part of 23 to 25 base pairs protected by the DNA binding protein from DNAase I digestion. A homologous binding activity can be detected in nuclei from several chicken tissues and from mouse liver.  相似文献   

17.
18.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

19.
Methylated DNA-binding protein (MDBP) from mammalian cells binds specifically to six pBR322 and M13mp8 DNA sequences but only when they are methylated at their CpG dinucleotide pairs. We cloned three high-affinity MDBP recognition sites from the human genome on the basis of their binding to MDBP. These showed much homology to the previously characterized prokaryotic sites. However, the human sites exhibited methylation-independent binding apparently because of the replacement of m5C residues with T residues. We also identified three other MDBP sites in the herpes simplex virus type 1 genome, two of which require in vitro CpG methylation for binding and are in the upstream regions of viral genes. A comparison of MDBP sites leads to the following partially symmetrical consensus sequence for MDBP recognition sites: 5'-R T m5Y R Y Y A m5Y R G m5Y R A Y-3'; m5Y (m5C or T), R (A or G), Y (C or T). This consensus sequence displays an unusually high degree of degeneracy. Also, interesting deviations from this consensus sequence, including a one base-pair deletion in the middle, are sometimes observed in high-affinity MDBP sites.  相似文献   

20.
Integration host factor (IHF) is a bacterial protein that binds and severely bends a specific DNA target. IHF binding sites are approximately 30 to 35 bp long and are apparently divided into two domains. While the 3' domain is conserved, the 5' domain is degenerate but is typically AT rich. As a result of physical constraints that IHF must impose on DNA in order to bind, it is believed that this 5' domain must possess structural characteristics conducive for both binding and bending with little regard for specific contacts between the protein and the DNA. We have examined the sequence requirements of the 5' binding domain of the IHF binding target. Using a SELEX procedure, we randomized and selected variants of a natural IHF site. We then analyzed these variants to determine how the 5' binding domain affects the structure, affinity, and function of an IHF-DNA complex in a native system. Despite finding individual sequences that varied over 100-fold in affinity for IHF, we found no apparent correlation between affinity and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号