首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of truncated atrial natriuretic peptide analogs were examined as a means of defining the structural requirements for receptor occupancy and stimulation of cyclic GMP accumulation in bovine aortic smooth muscle cells. It was determined that deletion of amino acids from the carboxyl and/or amino termini of the peptides diminished their ability to increase cyclic GMP levels. Deletion of amino acids from the carboxyl terminus had the greatest effect, and atrial natriuretic peptide analogs lacking the carboxyl-terminal phenylalanyl-arginyl-tyrosine tripeptide were 100-1000-fold less active than parent compounds in stimulating intracellular cyclic GMP accumulation. In marked contrast to the cyclic GMP effects, deletion of amino- and/or carboxyl-terminal amino acids had only minor effects on the affinity of the peptides for specific smooth muscle cell-associated receptors. Peptide analogs lacking the phenylalanyl-arginyl-tyrosine tripeptide bound to receptors with an affinity only 1.1-5-fold weaker than the parent compounds. Thus, there was no correlation between apparent receptor binding affinity of atrial natriuretic peptide analogs and potency of these same peptides for stimulating intracellular cyclic GMP accumulation. Furthermore, analogs that bound to receptors and failed to elicit significant cyclic GMP responses did not antagonize or modulate increases in cyclic GMP induced by parent compounds. These data are most consistent with the existence of multiple subpopulations of atrial natriuretic peptide receptors on aortic smooth muscle cells.  相似文献   

3.
C-type natriuretic peptide (CNP) which potently stimulates particulate guanylate cyclase activity in cultured rat vascular smooth muscle cells (VSMC) inhibited serum-induced DNA synthesis of the cells 10-fold more effectively than alpha-human atrial natriuretic peptide (alpha-hANP). The inhibitory effect of CNP was mimicked by 8-bromo-cGMP. The proliferation of VSMC was also suppressed by CNP more potently than alpha-hANP, while the peptide was less active for cGMP augmentation and for vasorelaxation than alpha-hANP in isolated rat aorta. These results suggest that CNP may be a growth regulating factor of VSMC rather than a vasodilator.  相似文献   

4.
The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.  相似文献   

5.
To elucidate the regulation of vascular receptors for atrial natriuretic peptide (ANP), we have studied the binding capacity of 125I-labeled rat (r) ANP using cultured vascular smooth muscle cells from rat aorta. After preincubation with 3.2 X 10(-8) M rANP at 37 degrees C, the binding capacity decreased as a function of time; the maximal receptor loss (70-75%) occurred after 4 hrs and persisted for 24 hrs. Pretreatment with cycloheximide (20 micrograms/ml) and actinomycin D (2 micrograms/ml) similarly caused a dramatic reduction (approximately 80%) of the binding capacity after 24 hrs; the half-life (t1/2) of the receptor loss was approximately 7-8 hrs. Following removal of rANP, the "down-regulated" ANP receptors fully recovered in the presence of 10% fetal calf serum, but not in combination with either actinomycin D or cycloheximide. Concanavalin A dose-dependently inhibited the binding. The binding capacity also decreased with time in the presence of tunicamycin (1 microgram/ml) with t1/2 of approximately 30 hrs. These data indicate that protein and carbohydrate moieties are essential for the functional integrity of the vascular receptor binding sites for ANP, and suggest that the recovery of the receptor loss by "down-regulation" requires concomitant RNA and protein synthesis.  相似文献   

6.
Type C atrial natriuretic peptide (ANP) receptor levels in cultured vascular endothelial cells were found to be very sensitive to NaCl and shown to be inversely related to the magnitude of ANP-induced cGMP response of the cells. Endothelial cells from bovine carotid artery were subcultured in Eagle's minimum essential medium supplemented with 10% fetal bovine serum (MEM-FBS) and in MEM-FBS plus 25 and 50 mM NaCl. Determination, after several passages, of ANP receptor levels in these cells by 125I-ANP binding assay and affinity labeling revealed a marked reduction in the number of type C receptor in the NaCl-treated cells, whereas type A receptor density was not affected. RNase protection assay to estimate the levels of type C receptor mRNA indicated that the reduction occurred at a pre-translational level. In spite of the decrease in type C receptor number and no significant change in type A receptor (i.e. particulate guanylate cyclase) levels, cGMP response of the NaCl-treated cells to ANP was greatly exaggerated; this sensitization was also observed in membrane preparations. Simple masking of type C ANP receptor with C-ANF (des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP), a ring-deleted ANP analog, did not produce any sensitization of the cGMP response to ANP; therefore, the above phenomenon cannot simply be explained by the clearance function of the type C receptor. Although whether the type C receptor depletion is directly related to the sensitization of the type A receptor/cyclase is not known, the phenomenon reported and characterized here will serve as a useful basis for elucidating ANP receptor regulation and activation.  相似文献   

7.
The presence of receptors for atrial natriuretic factor (ANF) was previously demonstrated in the mesenteric vascular bed in rats. Cultured vascular smooth muscle cells obtained from mesenteric arteries of rats were examined for binding of ANF. Saturation and competition experiments demonstrated the presence of a single class of receptors for ANF with high affinity (16 pM) and low capacity. Binding was specific. Kinetic studies showed a dissociation constant which agreed with that obtained at equilibrium in saturation and competition experiments. The exposure of the cells to unlabeled ANF for at least 24 hours showed that ANF may regulate its own receptors in smooth muscle under certain physiological conditions.  相似文献   

8.
9.
We have studied the effects of synthetic beta-human atrial natriuretic peptide (beta-hANP), an antiparallel dimer of alpha-hANP, on receptor binding and cGMP generation in cultured rat vascular smooth muscle cells and compared the effects with those of alpha-hANP. Characteristics of temperature-dependent binding and degradation of 125I-beta-hANP were similar to those of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for beta-hANP with a maximal binding capacity one-half that of alpha-hANP. Parallel and antiparallel dimers were equipotent in inhibiting the binding and stimulating intracellular cGMP formation, of which the maximal effect was about one-half that of alpha-hANP. Reverse-phase high performance liquid chromatography revealed that most of beta-hANP added to cells was converted to a small molecular mass component corresponding to alpha-hANP after incubation. These data suggest that the less potent effect of beta-hANP in receptor binding and cGMP generation may be partly accounted for by the possible conversion of beta-hANP to alpha-hANP at the site of target cells.  相似文献   

10.
Down-regulation of atrial natriuretic peptide (ANP) receptors was investigated using a cultured bovine pulmonary artery endothelial (CPAE) cell line. Endothelial cells have been shown to possess two subtypes of ANP receptors, a guanylate cyclase-coupled receptor (B-receptor) and a clearance receptor (C-receptor). The treatment with APIII, rat ANP (103-126), at concentrations of 10(-8) to 10(-6) M for 24 h, resulted in a significantly (p less than 0.01) greater decrease in maximum 125I-APIII binding to CPAE cells than the identical concentration of API, rat ANP (103-123). APIII at concentrations of 10(-8) to 10(-6) M stimulated cyclic GMP (cGMP) production 3.3-17.5-fold greater than similar concentrations of API. From these findings, we hypothesized that cGMP produced following ANP binding to the B-receptor participates in ANP receptor regulation. M&B 22948, a selective inhibitor of cGMP-specific phosphodiesterase, significantly (p less than 0.01) potentiated the effect of both API and APIII on 125I-APIII binding, while M&B 22948 itself had no significant effect on 125I-APIII binding. Treatment of the cells with 1 mM 8-bromo-cGMP also significantly (p less than 0.01) decreased 125I-APIII binding to the cells, and a potentiation of this effect was observed by M&B 22948. Scatchard analysis of binding data from 8-bromo-cGMP-treated cells showed a significant decrease in Bmax (1.79 +/- 0.15 to 1.20 +/- 0.07 fmol/mg protein, p less than 0.05) without a significant change in Kd. Affinity cross-linking of 125I-APIII to 8-bromo-cGMP-treated cells showed a decrease in the labeling of 60- and 70-kDa bands corresponding to the C-receptor. In addition, the APIII-stimulated cGMP response remained unchanged in the 8-bromo-cGMP-treated cells, indicating that the B-receptor was not down-regulated. We conclude that cGMP regulates ANP-binding sites on the endothelial cell and that the evidence indicates that the C-receptor may preferentially be down-regulated by cGMP in CPAE cells.  相似文献   

11.
Cyclic-3',5'-guanosine monophosphate (cGMP) mediates the intracellular signaling cascade responsible for the nitric oxide (NO) initiated relaxation of vascular smooth muscle (VSM). However, the temporal dynamics, including the regulation of cGMP turnover, are largely unknown. Here we report new mechanistic insights into the kinetics of cGMP synthesis and hydrolysis in primary VSM cells by utilizing FRET-based cGMP-indicators [A. Honda, S.R. Adams, C.L. Sawyer, V. Lev-Ram, R.Y. Tsien, W.R. Dostmann, Proc. Natl. Acad. Sci. U S A 98 (5) (2001) 2437.]. First, 2-(N,N-Diethylamino)-diazenolate 2-oxide (DEA/NO) and 2,2'-(Hydroxynitrosohydrazono)-bis-ethanimine (DETA/NO) induced NO-concentration dependent, transient cGMP responses ("peaks") irrespective of their rates of NO release. The kinetic characteristics of these cGMP peaks were governed by the concerted action of the NO-sensitive guanylyl cyclase (GC) and phosphodiesterase type V (PDE5) as shown by their respective inhibition using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and Sildenafil. These responses occurred in the presence of moderately elevated cGMP (5-15% FRET ratio), and thus activated PKG and phosphorylated PDE5, suggesting a prominent role for GC in the maintenance and termination of cGMP peaks. Furthermore, cGMP transients could be elicited repeatedly without apparent desensitization of GC or by suppression of cGMP via long-term PDE5 activity. These results demonstrate a continuous sensitivity of the NO/cGMP signaling system, inherent to the phasic nature of smooth muscle physiology.  相似文献   

12.
Recently a stimulatory effect of atrial natriuretic peptide (ANP) on the particulate guanylate cyclase system has been reported in the glomeruli from different species. Using cultures of homogeneous human glomerular cell lines, we found that rat and human ANP stimulated markedly cGMP formation in epithelial cells with a threshold dose of 1 nM. A 20-fold increase was obtained at 5 microM. Stimulation was also present but less substantial (2-fold at 5 microM) in mesangial cells. cGMP was formed rapidly and released in the medium. ANP and sodium nitroprusside, an activator of soluble guanylate cyclase, had additive effects on cGMP formation. ANP did not inhibit cAMP formation in both cell lines. These results demonstrate that, at least in the human species, epithelial cells represent the main target of ANP in the glomerulus. Synthesis of cGMP in the glomerular epithelial cells in response to ANP also suggests that the excess of urinary cGMP produced by the kidney which is observed after ANP administration is of glomerular rather than of tubular origin.  相似文献   

13.
The present study was undertaken to determine the presence of CNP immunoreactivity in human breast tissue (n = 9). Immunohistochemical staining of breast tissue revealed the presence of CNP immunoreactivity localized to vascular endothelial cells. This study demonstrates for the first time that CNP immunoreactivity is present in humans. Based upon the knows biological actions of CNP, these findings suggest that CNP may function as part of an endothelium-derived vasoregulatory system.  相似文献   

14.
Atrial natriuretic factor (ANF) has been shown to bind to specific receptors on vascular smooth muscle cells (VSMC) and to cause an increase in intracellular cyclic GMP (cGMP) content. We have recently demonstrated that a prominent Na+,K+,Cl- cotransport system is present in VSMC and that a permeable cGMP analog (8-bromo-cGMP) stimulates activity of the cotransporter. We have also shown that the ANF peptide, rat atriopeptin III, stimulates Na+,K+,Cl- cotransport and elevates intracellular cGMP levels in VSMC. In the present study, we tested the hypothesis that ANF stimulation of Na+,K+,Cl- cotransport occurs via an increase in cGMP levels. When the quinolinedione, 6-anilo-5,8-quinolinedione (LY83583) (10 microM), was used to block formation of cGMP in VSMC from primary cultures of rat thoracic aorta, it was found that both basal and rat atriopeptin III (100 nM)-stimulated Na+,K+,Cl- cotransport were significantly inhibited. The effect of LY83583 was dose-dependent and the half-maximal inhibitory concentration was 0.5 microM. LY83583 also inhibited cotransport in the presence of a maximal concentration of 8-bromo-cGMP. However, this inhibition was not seen in cells also treated with 2-O-propoxyphenyl-8-azapurin-6-one (M&B 22,948), an inhibitor of cGMP phosphodiesterase. M&B 22,948 alone also increased levels of cotransport. Since inhibition of cGMP formation blocks ANF-stimulated Na+,K+,Cl- cotransport and inhibition of cGMP breakdown enhances Na+, K+, Cl- cotransport, we conclude that ANF stimulation of Na+,K+,Cl- cotransport in VSMC is mediated via increase in intracellular cGMP levels.  相似文献   

15.
Binding, internalization, and degradation of 125I-labeled-rat atrial natriuretic peptide (rANP) were studied in cultured rat aortic vascular smooth muscle cells (VSMC). At 37 degrees C, 125I-labeled-rANP rapidly bound to VSMCs, but the cell-bound radioactivity rapidly decreased upon subsequent incubation, while the binding was slow at 4 degrees C, reaching to an apparent equilibrium after 6 hrs. The cell-bound 125I-labeled-rANP at 37 degrees C is rapidly dissociated from VSMC (t 1/2: approximately 40 min) with the appearance of degradaded product(s) of radioligand in the medium, whereas the degradation was minimal at 4 degrees C. This degradative process was blocked by inhibitors of metabolic energy production (azide, dinitrophenol), inhibitors of lysosomal cathepsins (leupeptin, pepstatin), and lysosomotropic agents (NH4Cl, chloroquine, lidocaine, methylamine, dansylcadaverine), but not by inhibitors of serine or thiol proteases. 125I-labeled-rANP initially bound to the cell-surface was rapidly internalized, and delivered to lysosomal structures, which was confirmed by autoradiographic studies. These data indicate that rANP, after binding to the cell-surface receptors, is rapidly internalized into the cells through receptor-mediated endocytosis, and subsequently degradaded by lysosomal hydrolases.  相似文献   

16.
Using 125I-labeled-Tyr0-rat(r)-calcitonin gene-related peptide (CGRP), a potent vasodilatory neuropeptide, we have identified and characterized specific binding sites for CGRP in cultured rat vascular smooth muscle cells (VSMC) and bovine endothelial cells (EC). rCGRP and human (h) CGRP equipotently inhibited 125I-rCGRP binding to both cells, but human calcitonin (hCT) was less potent and other unrelated polypeptides were ineffective. Both rCGRP and hCGRP, but not hCT, equally stimulated intracellular cAMP generation in both cells distinct from beta-adrenergic receptor-mediated mechanism, although they had no effect on cGMP generation in either cell or synthesis of prostacyclin in EC. Autoradiograph of affinity-labeled cell membranes revealed that 125I-rCGRP interacts with a single binding component of almost identical molecular size (approximately 60-kDa) in both cells under reducing and nonreducing conditions. The present study demonstrates for the first time the presence of CGRP receptors in cultured VSMC and EC, functionally coupled to adenylate cyclase system distinct from beta-adrenergic receptors. It is suggested that CGRP-induced vasorelaxation may be mediated partly by cAMP-dependent and/or endothelium-dependent mechanism.  相似文献   

17.
Nitroglycerin (NG) caused a dose dependent-relaxation of the bovine mesenteric artery with an ED50-value of 2.7 × 10?8M. The relaxant effect of NG was significantly correlated to an increase in the cGMP content of the artery. There was a significant non-linear component in the data. At moderate cGMP levels relaxation and cGMP changes were correlated. At high levels of cGMP, however, the mechanism responsible for the nitroglycerin-mediated relaxation seemed to be completely activated and a further increase in cGMP did not induce additional relaxation. The cGMP content of the preparation was not significantly changed by nitroglycerin. The cGMP increase induced by nitroglycerin preceded the relaxation. A maximal increase of cGMP was observed after 2 min and the levels subsequently declined. This decline was not accompanied by an increase in the tissue tension. It is suggested from these experiments that cGMP might cause a relaxation of the vascular smooth muscle. Furthermore, if this suggestion is true, there seems to exist a “receptor reserve” for NG with respect to its relaxing action, since an over-capacity for cGMP production is present.  相似文献   

18.
The effect of endothelin-3 (ET-3) on C-type natriuretic peptide (CNP)-induced guanosine 3′,5′-cyclic monophosphate (cGMP) was examined in C6 glioma cells, CNP-induced cGMP formation was both time- and dose-dependent, with an EC50 value of about 10 nM. While ET-3 and phorbol 12-myristate 13-acetate (PMA) had no effect on basal cGMP production, both compounds were potent inhibitors of CNP-induced cGMP formation, with IC50 values of approximately 10 and 2 nM, respectively. Although protein kinase C (PKC) inhibitors had no effect on basal cGMP formation, Ro 31-8220, a PKC inhibitor, reversed the ET-3 inhibition on CNP-induced cGMP formation by 63% and that of PMA almost completely. Our findings suggest that stimulation of cGMP formation by CNP in C6 glioma cells is negatively modulated by PKC activation, and that the inhibitory action of ET-3 on CNP-stimulated cGMP formation is mediated partly by PKC.  相似文献   

19.
Smooth muscle cells (SMC) are the major cellular component of the blood vessel wall and are continuously exposed to cyclic stretch due to pulsatile blood flow. This study examined the effects of a physiologically relevant level of cyclic stretch on rat aortic vascular SMC proliferation. Treatment of static SMC with serum, platelet-derived growth factor, or thrombin stimulated SMC proliferation, whereas exposure of SMC to cyclic stretch blocked the proliferative effect of these growth factors. The stretch-mediated inhibition in SMC growth was not due to cell detachment or increased cell death. Flow cytometry analysis revealed that cyclic stretch increased the fraction of SMC in the G(0)/G(1) phase of the cell cycle. Stretch-inhibited G(1)/S phase transition was associated with a decrease in retinoblastoma protein phosphorylation and with a selective increase in the cyclin-dependent kinase inhibitor p21, but not p27. These results demonstrate that cyclic stretch inhibits SMC growth by blocking cell cycle progression and suggest that physiological levels of cyclic stretch contribute to vascular homeostasis by inhibiting the proliferative pathway of SMC.  相似文献   

20.
The induction of cyclic GMP formation in target tissues, i.e. vascular smooth muscle and endothelial cells, by atrial natriuretic factor is followed by its egression into plasma and urine. Since the extracellular appearance of this cyclic nucleotide is used as a marker of atrial natriuretic factor's biological activity, the present study was designed to investigate the characteristics of its egression to the extracellular fluid. In contrast to cyclic AMP, whose profile of egression in time closely follows its intracellular levels, cyclic GMP egression begins with the intracellular decline but continues for a prolonged period, even accumulating for up to 24 h in the extracellular medium. The relative egression of cyclic GMP decreases slightly in the presence of phosphodiesterase inhibitors. On the other hand, the process is sensitive to temperature, inhibited by such agents as probenecid, and occurs against a gradient of 7 orders of magnitude. Large increases of cyclic AMP, as induced by forskolin, can effectively compete for the cyclic GMP transport system, resulting in a 3-fold rise in intracellular cyclic GMP levels, which corresponds to a 3-fold decline of extracellular accumulation. Although the biological significance of cyclic GMP egression is unknown, the results of this study suggest that the process may be one of the significant contributors to the control of cyclic GMP levels in the cell with potential physiological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号