首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

2.
Rat brain Fe65 and its truncated forms corresponding to the combined PTB1 and PTB2 domains, as well as to the isolated PTB2 domain, were expressed in Escherichia coli and purified from inclusion bodies by affinity chromatography. The recombinant proteins were refolded and judged functionally active by their ability to interact with native APP. Limited proteolysis of recombinant Fe65 and PTB1-2 with trypsin, chymotrypsin and V8 proteases showed that the most sensitive proteoltytic sites were positioned at the level of the interdomain regions comprised between WW/PTB1 and PTB1/PTB2. Secondary structure of the recombinant proteins, evaluated by CD spectroscopy, showed a different degree of unordered structures, the PTB2 domain being the higher organised region. In addition, intrinsic fluorescence measurements of PTB2, indicated that a conformational transition of the protein can be induced by denaturating agents such as GuHCl. These data provide first evidences on the secondary structural levels of Fe65.  相似文献   

3.
4.
Adhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides. Positively charged surface patches of the domain preferentially bind to polyvalent acidic lipids such as PIP2 or PIP3 over the monovalent PS phospholipid and this interaction is dependent on the N-terminal helix of the hSH3 domain fold. Basic amino acid side-chains from the SH3 scaffold also contribute to lipid binding. In the context of T cell signalling, our findings suggest that ADAP, upon recruitment to the cell-cell junction as part of a multiprotein complex, directly interacts with phosphoinositide-enriched regions of the plasma membrane. Furthermore, the ADAP lipid interaction defines the helically extended SH3 scaffold as a novel member of membrane interaction domains.  相似文献   

5.
In Escherichia coli, protein degradation is performed by several proteolytic machines, including ClpAP. Generally, the substrate specificity of these machines is determined by chaperone components, such as ClpA. In some cases, however, the specificity is modified by adaptor proteins, such as ClpS. Here we report the 2.5 A resolution crystal structure of ClpS in complex with the N-terminal domain of ClpA. Using mutagenesis, we demonstrate that two contact residues (Glu79 and Lys 84) are essential not only for ClpAS complex formation but also for ClpAPS-mediated substrate degradation. The corresponding residues are absent in the chaperone ClpB, providing a structural rationale for the unique specificity shown by ClpS despite the high overall similarity between ClpA and ClpB. To determine the location of ClpS within the ClpA hexamer, we modeled the N-terminal domain of ClpA onto a structurally defined, homologous AAA+ protein. From this model, we proposed a molecular mechanism to explain the ClpS-mediated switch in ClpA substrate specificity.  相似文献   

6.
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a chaperone and catalyzes the formation and rearrangement of disulfide bonds in proteins. Domain c-(463-491), containing 18 acidic residues, is an interesting and important C-terminal extension of PDI. In this study, the PDI mutant abb'a', in which domain c is truncated, was used to investigate the relationship between the C-terminal structure and chaperone function. Reactivation and light-scattering experiments show that both wild-type PDI and abb'a' interact with lactate dehydrogenase (LDH, EC 1.1.1.27), which tends to self-aggregate during reactivation. The interaction enhances reactivation of LDH and reduces aggregation. According to these results, it seems as if domain c might be dispensable to the chaperone function of PDI. However, abb'a' is prone to self-aggregation and causes increased aggregation of LDH during thermal denaturation. In contrast, wild-type PDI remains active as a chaperone under these conditions and prevents self-aggregation of LDH. Furthermore, measurements of intrinsic fluorescence and difference absorbance during denaturation show that abb'a' is much more labile to heat or guanidine hydrochloride denaturation than wild-type PDI. This suggests that domain c is required for the stabilization and maintenance of the chaperone function of PDI under extreme conditions.  相似文献   

7.
AP-4 is a member of the adaptor protein complexes, which control vesicular trafficking of membrane proteins. Although AP-4 has been suggested to contribute to basolateral sorting in epithelial cells, its function in neurons is unknown. Here, we show that disruption of the gene encoding the beta subunit of AP-4 resulted in increased accumulation of axonal autophagosomes, which contained AMPA receptors and transmembrane AMPA receptor regulatory proteins (TARPs), in axons of hippocampal neurons and cerebellar Purkinje cells both in vitro and in vivo. AP-4 indirectly associated with the AMPA receptor via TARPs, and the specific disruption of the interaction between AP-4 and TARPs caused the mislocalization of endogenous AMPA receptors in axons of wild-type neurons. These results indicate that AP-4 may regulate proper somatodendritic-specific distribution of its cargo proteins, including AMPA receptor-TARP complexes and the autophagic pathway in neurons.  相似文献   

8.
The cytoplasmic adaptor protein Disabled-1 (Dab1) is necessary for the regulation of neuronal positioning in the developing brain by the secreted molecule Reelin. Binding of Reelin to the neuronal apolipoprotein E receptors apoER2 and very low density lipoprotein receptor induces tyrosine phosphorylation of Dab1 and the subsequent activation or relocalization of downstream targets like phosphatidylinositol 3 (PI3)-kinase and Nckbeta. Disruption of Reelin signaling leads to the accumulation of Dab1 protein in the brains of genetically modified mice, suggesting that Reelin limits its own action in responsive neurons by down-regulating the levels of Dab1 expression. Here, we use cultured primary embryonic neurons as a model to demonstrate that Reelin treatment targets Dab1 for proteolytic degradation by the ubiquitin-proteasome pathway. We show that tyrosine phosphorylation of Dab1 but not PI3-kinase activation is required for its proteasomal targeting. Genetic deficiency in the Dab1 kinase Fyn prevents Dab1 degradation. The Reelin-induced Dab1 degradation also depends on apoER2 and very low density lipoprotein receptor in a gene-dose dependent manner. Moreover, pharmacological blockade of the proteasome prevents the formation of a proper cortical plate in an in vitro slice culture assay. Our results demonstrate that signaling through neuronal apoE receptors can activate the ubiquitin-proteasome machinery, which might have implications for the role of Reelin during neurodevelopment and in the regulation of synaptic transmission.  相似文献   

9.
ClpB/Hsp104 efficiently reactivates protein aggregates in cooperation with the DnaK/Hsp70 system. As a member of the AAA+ protein family (i.e. an expanded superfamily of ATPases associated with diverse cellular activities), ClpB forms a ring-shaped hexamer in an ATP-dependent manner. A protomer of ClpB consists of an N-terminal domain (NTD), an AAA+ module, a middle domain and another AAA+ module. In the crystal structures, the NTDs point to two different directions relative to other domains and are not visible in the single-particle cryo-electron microscopy reconstruction, suggesting that the NTD is highly mobile. In the present study, we generated mutants in which the NTD was anchored to other domain by disulfide cross-linking and compared several aspects of ClpB function between the reduced and oxidized mutants, using the wild-type and NTD-truncated ClpB (ClpBΔN) as references. In their oxidized form, the mutants and wild-type bind casein with a similar affinity, although the affinity of ClpBΔN for casein was significantly low. However, the extent of casein-induced stimulation of ATPase, the rate of substrate threading and the efficiency of protein disaggregation of these mutants were all lower than those of the wild-type but similar to those of ClpBΔN. These results indicate that the NTD supports the substrate binding of ClpB and that its conformational shift assists the threading and disaggregation of substrate proteins.  相似文献   

10.
The stepwise chromatographic behaviour on DEAE-Sepharose of rat Fe65, a neuronal protein, was tested, using as eluants KCl, CaCl2, and MgCl2. Assays by western blot showed that Fe65 was eluted by CaCl2, at a ionic strength 20% lower than that of MgCl2 or KCl. Interestingly, in the case of a truncated Fe65, lacking a glutamic acid rich region at the N-terminus, the ionic strengths of the various eluants were almost identical. These results suggested a possible inhibitory role of calcium ions in the binding of the protein to DEAE and a specific affinity of these ions for long acidic stretches.  相似文献   

11.
The tumor suppressor function of the von Hippel-Lindau protein (pVHL) has previously been linked to its role in regulating hypoxia-inducible factor levels. However, VHL gene mutations suggest a hypoxia-inducible factor-independent function for the N-terminal acidic domain in tumor suppression. Here, we report that phosphorylation of the N-terminal acidic domain of pVHL by casein kinase-2 is essential for its tumor suppressor function. This post-translational modification did not affect the levels of hypoxia-inducible factor; however, it did change the binding of pVHL to another known binding partner, fibronectin. Cells expressing phospho-defective mutants caused improper fibronectin matrix deposition and demonstrated retarded tumor formation in mice. We propose that phosphorylation of the acidic domain plays a role in the regulation of proper fibronectin matrix deposition and that this may be relevant for the development of VHL-associated malignancies.  相似文献   

12.
A mutation resulting in substitution of positively charged Lys53 with negatively charged Glu in the coat protein was introduced in the infectious cDNA copy of the genome of wild-type tobacco mosaic virus strain U1. Kinetic analysis of long-distance virus transport in plants showed that systemic distribution of the mutant virus was delayed by 5-6 days as compared with the wild-type one. On evidence of RNA sequencing in the mutant progeny, Glu50 of the coat protein was substituted with Lys after passage I to compensate for the loss of the positive charge at position 53. Electron microscopy revealed atypical inclusions (rodlike structures, multiple electron-dense globular particles) in the nuclear interchromatin space of leaf mesophyll cells infected with the mutant but not with the wild-type virus.  相似文献   

13.
14.
15.

Background

CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions.

Results

We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size.

Conclusions

This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses.
  相似文献   

16.
17.
Drug efflux pumps of Gram-negative bacteria are tripartite export machineries located in the bacterial envelopes contributing to multidrug resistance. Protein structures of all three components have been determined, but the exact interaction sites are still unknown. We could confirm that the hybrid system composed of Pseudomonas aeruginosa channel tunnel OprM and the Escherichia coli inner membrane complex, formed by adaptor protein (membrane fusion protein) AcrA and transporter AcrB of the resistance nodulation cell division (RND) family, is not functional. However, cross-linking experiments show that the hybrid exporter assembles. Exchange of the hairpin domain of AcrA with the corresponding hairpin from adaptor protein MexA of P. aeruginosa restored the functionality. This shows the importance of the MexA hairpin domain for the functional interaction with the OprM channel tunnel. On the basis of these results, we have modeled the interaction of the hairpin domain and the channel tunnel on a molecular level for AcrA and TolC as well as MexA and OprM, respectively. The model of two hairpin docking sites per TolC protomer corresponding with hexameric adaptor proteins was confirmed by disulfide cross-linking experiments. The role of this interaction for functional efflux pumps is discussed.  相似文献   

18.
The tumor necrosis factor family member Fas ligand (FasL) induces apoptosis in Fas receptor-expressing target cells and is an important cytotoxic effector molecule used by CTL- and NK-cells. In these hematopoietic cells, newly synthesized FasL is stored in specialized secretory lysosomes and only delivered to the cell surface upon activation and target cell recognition. FasL contains an 80-amino acid-long cytoplasmic tail, which includes a proline-rich domain as a bona fide Src homology 3 domain-binding site. This proline-rich domain has been implicated in FasL sorting to secretory lysosomes, and it may also be important for reverse signaling via FasL, which has been described to influence T-cell activation. Here we report the identification of the Src homology 3 domain-containing adaptor protein PSTPIP as a FasL-interacting partner, which binds to the proline-rich domain. PSTPIP co-expression leads to an increased intracellular localization of Fas ligand, thereby regulating extracellular availability and cytotoxic activity of the molecule. In addition, we demonstrate recruitment of the tyrosine phosphatase PTP-PEST by PSTPIP into FasL.PSTPIP.PTP-PEST complexes which may contribute to FasL reverse signaling.  相似文献   

19.
20.
Spinophilin, a neuronal scaffolding protein, is essential for synaptic transmission, and functions to target protein phosphatase-1 to distinct subcellular locations in dendritic spines. It is vital for the regulation of dendritic spine formation and motility, and functions by regulating glutamatergic receptors and binding to filamentous actin. To investigate its role in regulating actin cytoskeletal structure, we initiated structural studies of the actin binding domain of spinophilin. We demonstrate that the spinophilin actin binding domain is intrinsically unstructured, and that, with increasing C-terminal length, the domain shows augmented secondary structure content. Further characterization confirmed the previously known crosslinking activity and uncovered a novel filamentous actin pointed-end capping activity. Both of these functions seem to be fully contained within residues 1-154 of spinophilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号