首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The modulation of host cell apoptosis by intracellular bacterial pathogens   总被引:27,自引:0,他引:27  
Recent years have witnessed significant advances in unraveling the elegant mechanisms by which intracellular bacterial pathogens induce and/or block apoptosis, which can influence disease progression. This intriguing aspect of the host-pathogen interaction adds another fascinating dimension to our understanding of the exploitation of host cell biology by intracellular bacterial pathogens.  相似文献   

2.
The gastrointestinal tract provides a variety of environmental challenges to any bacterium seeking to successfully colonize or cause disease in a host. A major obstacle is the varied oxygen concentrations encountered at different sites in the intestine. Here we review the mechanisms bacterial pathogens utilize to sense oxygen within the gastrointestinal tract, and recent insights into how this acts as a signal to trigger virulence and to modulate host responses.  相似文献   

3.
4.
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in "quantum leaps" via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens.  相似文献   

5.
The gram-negative type III secretion pathway translocates bacterial proteins directly into eukaryotic host cells, thus allowing a pathogen to interfere directly with host signalling pathways. Protein and inositol phosphatases and protein kinases have been identified as delivered effectors in three bacterial pathogens, Salmonella, Shigella and Yersinia, and it is expected that several more such type III effectors will be found.  相似文献   

6.
7.
The human gastrointestinal (GI) tract contains a complex microbial community that develops in time and space. The most widely used approaches to study microbial diversity and activity are all based on the analysis of nucleic acids, DNA, rRNA and mRNA. Here, we present a DNA isolation protocol that is suitable for a wide variety of GI tract samples, including biopsies with minute amounts of material. The protocol is set up in such a way that sampling can be performed outside the laboratory, which offers possibilities for implementation in large intervention studies. The DNA isolation is based on mechanical disruption, followed by isolation of nucleic acids using phenol:chloroform:isoamylalcohol extraction. In addition, it includes an alternative DNA isolation protocol that is based on a commercial kit. These protocols have all been successfully used in our laboratory, resulting in isolation of DNA of sufficient quality for microbial diversity studies. Depending on the number of samples and sample type, the whole procedure will take approximately 2.5-4 hours.  相似文献   

8.
The human gastrointestinal (GI) tract contains a complex microbial community that consists of numerous uncultured microbes. Therefore, nucleic-acid-based approaches have been introduced to study microbial diversity and activity, and these depend on the proper isolation of DNA, rRNA and mRNA. Here, we present an RNA isolation protocol that is suitable for a wide variety of GI tract samples. The procedure for isolating DNA from GI tract samples is described in another Nature Protocols article. One of the benefits of our RNA isolation protocol is that sampling can be performed outside the laboratory, which offers possibilities for implementation in large intervention studies. The RNA isolation is based on mechanical disruption, followed by isolation of nucleic acids using phenol:chloroform:isoamylalcohol extraction and removal of DNA. In our laboratory, this protocol has resulted in the isolation of rRNA and mRNA of sufficient quality and quantity for microbial diversity and activity studies. Depending on the number of samples, the sample type and the quenching procedure chosen, the whole procedure can be performed within 2.5-4 h.  相似文献   

9.
10.
Modulation of phagocyte apoptosis by bacterial pathogens   总被引:9,自引:0,他引:9  
Phagocytic leukocytes such as neutrophils and macrophages are essential for the innate immune response against invading bacteria. Binding and ingestion of bacteria by these host cells triggers potent anti-microbial activity, including production of reactive oxygen species. Although phagocytes are highly adept at destroying bacteria, modulation of leukocyte apoptosis or cell death by bacteria has emerged as a mechanism of pathogenesis. Whereas induction of macrophage apoptosis by pathogens may adversely affect the host immune response to infection, acceleration of neutrophil apoptosis following phagocytic interaction with bacteria appears essential for the resolution of infection. This idea is supported by the finding that some bacterial pathogens alter normal phagocytosis-induced neutrophil apoptosis to survive and cause disease. This review summarizes what is currently known about modulation of phagocyte apoptosis by bacteria and describes a paradigm whereby bacteria-induced neutrophil apoptosis plays a role in the resolution of infection.  相似文献   

11.
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.  相似文献   

12.
Citrobacter rodentium belongs to a family of human and animal enteric pathogens that includes the clinically significant enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). These pathogens exploit attaching and effacing (A/E) lesions to colonize the host gastrointestinal tract. However, both EHEC and EPEC are poorly pathogenic in mice. In contrast, C. rodentium, which is genetically highly related to E. coli, relies on A/E lesion formation as an essential step in both colonization and infection of the murine mucosa, providing an excellent in vivo model. In this study we have used bioluminescence imaging (BLI) to investigate the organ specificity and dynamics of colonization of mice by LB-grown and mouse-passaged C. rodentium in situ and in real time. We have demonstrated the appearance of a 'hyperinfectious' state after passage of C. rodentium through the murine gastrointestinal tract. The 'hyperinfectious' state was found to dramatically reduce the dose required to infect secondary individuals, and also influenced the tissue distribution of colonizing bacteria, removing the requirement for primary colonization of the caecal patch. In addition, the 'hyperinfectious' phenotype was found to be transient with one overnight passage in rich medium sufficient to return C. rodentium to 'culture' infectivity.  相似文献   

13.
14.
15.
Numerous bacterial pathogens “confine” themselves within host cells with an intracellular localization as main or exclusive niche. Many of them switch dynamically between a membrane-bound or cytosolic lifestyle. This requires either membrane damage and/or repair of the bacterial-containing compartment. Niche switching has profound consequences on how the host cell recognizes the pathogens in time and space for elimination. Moreover, niche switching impacts how bacteria communicate with host cells to obtain nutrients, and it affects the accessibility to antibiotics. Understanding the local environments and cellular phenotypes that lead to niche switching is critical for developing new host-targeted antimicrobial strategies, and has the potential to shed light into fundamental cellular processes.  相似文献   

16.
The association of Helicobacter pylori (H. pylori) with gastric cancer is thus far the best understood model to comprehend the causal relationship between a microbial pathogen and cancer in the human gastrointestinal tract. Besides H. pylori, a variety of other pathogens are now being recognized as potential carcinogens in different settings of human cancer. In this context, viral causes of human cancers are central to the issue since these account for 10-20% of cancers worldwide. In the case of H. pylori and gastric cancer, as well as the human papillomavirus and anal cancer, the causal relationship between the infectious agent and the related cancer in the gastrointestinal tract has been clearly confirmed by epidemiological and experimental studies. Similarly, Epstein-Barr virus and the oncogenic JC virus are being suggested as possible causative agents for cancers in the upper and lower gastrointestinal tract. This review discusses various viral and microbial pathogens and their oncogenic properties in the evolution of gastrointestinal carcinogenesis and summarizes the available experimental data make a convincing agreement favoring the associations between infectious agents and specific human cancers.  相似文献   

17.
Infection by the bacterium Listeria monocytogenes depends on host cell clathrin. To determine whether this requirement is widespread, we analyzed infection models using diverse bacteria. We demonstrated that bacteria that enter cells following binding to cellular receptors (termed "zippering" bacteria) invade in a clathrin-dependent manner. In contrast, bacteria that inject effector proteins into host cells in order to gain entry (termed "triggering" bacteria) invade in a clathrin-independent manner. Strikingly, enteropathogenic Escherichia coli (EPEC) required clathrin to form actin-rich pedestals in host cells beneath adhering bacteria, even though this pathogen remains extracellular. Furthermore, clathrin accumulation preceded the actin rearrangements necessary for Listeria entry. These data provide evidence for a clathrin-based entry pathway allowing internalization of large objects (bacteria and ligand-coated beads) and used by "zippering" bacteria as part of a general mechanism to invade host mammalian cells. We also revealed a nonendocytic role for clathrin required for extracellular EPEC infections.  相似文献   

18.
Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases.  相似文献   

19.
The translocation of indigenous bacteria from the gastrointestinal tract to the mesenteric lymphnodes was compared in ten strains of mice. Indigenous Escherichia coli were cultured from the mesenteric lymphnodes of only two of the six mouse strains examined. Thus, spontaneous translocation of indigenous enteric bacteria across the intestinal barrier did not occur to any significant extent in any of the mouse strains examined. Since bacterial overgrowth in the gastrointestinal tract promotes bacterial translocation, bacterial translocation was tested in ten mouse strains including B10 series after antibiotic-decontaminated and subsequent colonization with streptomycin-resistant E. coli C25. E. coli C25 populated the ceca of the mice at levels of 10(8) to 10(9) per gram and translocated to 90-100% of the mesenteric lymphnodes with mean of 10(1.13) to 10(1.86) per mesenteric lymphnode. However, there were no significant differences between mouse strains as to the translocation incidence or the numbers of viable E. coli C25 per mesenteric lymphnode. Thus, genetic differences between mouse strains did not influence bacterial translocation from the gastrointestinal tract to the mesenteric lymphnodes.  相似文献   

20.
Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn’s disease patients, we identified genes that might be biomarkers of Crohn’s and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号