共查询到20条相似文献,搜索用时 15 毫秒
1.
The main physiological function of plasmin is blood clot fibrinolysis and restoration of normal blood flow. To date, however, it became apparent that in addition to thrombolysis, the plasminogen/plasmin system plays an important physiological and pathological role in a number of other essential processes: degradation of the extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and tumor cell migration. This review focuses on structural features of plasminogen, regulation of its activation by physiological plasminogen activators, inhibitors of plasmin, and plasminogen activators, and the role of plasminogen binding to fibrin, cellular receptors, and extracellular ligands in various functions performed by plasmin thus formed. 相似文献
2.
Expression of recombinant human plasminogen in mammalian cells is augmented by suppression of plasmin activity. 总被引:2,自引:0,他引:2
S J Busby E Mulvihill D Rao A A Kumar P Lioubin M Heipel C Sprecher L Halfpap D Prunkard J Gambee 《The Journal of biological chemistry》1991,266(23):15286-15292
We present evidence that over-expression of human plasminogen, the precursor to the serine protease plasmin, can be cytotoxic to mammalian cells. When an expression vector containing plasminogen cDNA is transfected into baby hamster kidney cells, the number of drug-resistant colonies as well as the levels of plasminogen secreted by those colonies is lower than observed in similar transfections of other protease precursor genes. The recombinant plasminogen accumulates intracellularly as degraded NH2-terminal fragments. In contrast, a mutant of plasminogen that produces inactive plasmin (active site Ser740 changed to Ala) is synthesized by these cells as a full-length plasminogen molecule, and the colony numbers and expression levels are normal. Thus, the generation of plasmin activity is responsible for the cytotoxic phenomena and the degradation associated with plasminogen expression. In addition, experiments using a plasminogen mutant that cannot be activated to plasmin (activation cleavage site Arg560 to Gly) or using coexpression of antisense urokinase RNA indicate that an endogenous plasminogen activator is responsible for converting newly synthesized plasminogen to plasmin. Finally, coexpression of plasminogen with alpha 2-plasmin inhibitor, a serpin which is the physiologic inhibitor of plasmin, prevents the toxic effects of intracellular plasmin activity and allows the synthesis and secretion of native human plasminogen. 相似文献
3.
Role of plasminogen, plasmin, and plasminogen activators in the migration of fibroblasts into plasma clots 总被引:2,自引:0,他引:2
Human diploid fibroblasts were seeded onto or into plasma clots and different aspects of cell adhesion and migration were measured. The roles of plasminogen activators and plasmin were studied by either the removal of plasminogen from plasma prior to clotting or by the addition of 10 mM epsilon-aminocaproic acid, which brings about an inhibition of plasmin in this system. When cells were seeded onto the surface of plasma clots, rates of attachment, spreading, and migration were unaffected by plasminogen depletion or plasmin inhibition. In contrast, when cells were seeded into plasma clots, then, although the rates of cells spreading were unaffected, cell migration was abolished by plasminogen depletion or by plasmin inhibition. When cells were seeded onto the surface of plasma clots and the rate of migration into the clots was measured, there was an absolute requirement for plasmin activity; while fibroblasts migrated rapidly into the fibrin lattice of control clots, in the case of plasminogen-depleted clots, cells failed to penetrate the lattice. Focussing through a plasma clot revealed that fibroblasts do not migrate through the fibrin lattice but instead, localized areas of fibrinolysis are generated and cells migrate over the surface of the area of lysis. 相似文献
4.
The role of the streptokinase (SK) alpha-domain in plasminogen (Pg) and plasmin (Pm) interactions was investigated in quantitative binding studies employing active site fluorescein-labeled [Glu]Pg, [Lys]Pg, and [Lys]Pm, and the SK truncation mutants, SK-(55-414), SK-(70-414), and SK-(152-414). Lysine binding site (LBS)-dependent and -independent binding were resolved from the effects of the lysine analog, 6-aminohexanoic acid. The mutants bound indistinguishably, consistent with unfolding of the alpha-domain on deletion of SK-(1-54). The affinity of SK for [Glu]Pg was LBS-independent, and although [Lys]Pg affinity was enhanced 13-fold by LBS interactions, the LBS-independent free energy contributions were indistinguishable. alpha-Domain truncation reduced the affinity of SK for [Glu]Pg 2-7-fold and [Lys]Pg =2-fold, but surprisingly, rendered both interactions near totally LBS-dependent. The LBS-independent affinity of SK for [Lys]Pm, 3000-fold higher compared with [Lys]Pg, was reduced dramatically by alpha-domain truncation. Thermodynamic analysis demonstrates that the SK alpha-domain contributes substantially to affinity for all Pg/Pm species solely through LBS-independent interactions, and that the higher affinity of SK for [Lys]Pm compared with [Lys]Pg involves all three SK domains. The residual affinity of the SK betagamma-fragment for all Pg/Pm species was increased by an enhanced contribution to complex stability from LBS-dependent interactions or free energy coupling between LBS-dependent and -independent interactions. Redistribution of the free energy contributions accompanying alpha-domain truncation demonstrates the interdependence of SK domains in stabilizing the SK-Pg/Pm complexes. The flexible segments connecting the SK alpha, beta, and gamma domains allow their rearrangement into a distinctly different bound conformation accompanying loss of the constraint imposed by interactions of the alpha-domain. 相似文献
5.
The effect of methylglyoxal on the plasminogen-plasmin system is studied. Treatment of plasminogen with methylglyoxal at a 20-fold molar excess results in covalent modification of the molecule as evidenced by the decreased number of NH(2) side chains, arginine side chain residues and the new band in the non-tryptophan dependent fluorescent spectrum. This structural modification is associated with profound functional alterations: the rate of activation by streptokinase, tissue-type plasminogen activator, urokinase-type plasminogen activator and trypsin decreases and the amidolytic activity of the generated plasmin is impaired. Plasmin treatment with methylglyoxal on the other hand does not alter its steady-state kinetic parameters on a peptidyl-anilide synthetic substrate, indicating that modification susceptible side chains are sensitive to methylglyoxal only in the zymogen. Our data suggest that in vivo fibrinolysis could be impaired under pathological conditions, e.g. increased methylglyoxal formation in diabetes mellitus. 相似文献
6.
7.
8.
A chromatographic method involving medium-pressure liquid chromatography on alumina impregnated with silver nitrate is described for the separation of a series of closely related C27 sterol precursors of cholesterol differing only in the number and location of olefinic double bonds. The features of the described system are compared with those of previously described thin-layer, gas-liquid, gravity column, and high-pressure liquid chromatographic methods. 相似文献
9.
Hrynenko TV Iusova OI Zadorozhna MB Makohonenko IeM 《Ukrainski? biokhimicheski? zhurnal》2002,74(6):83-90
The kinetic of plasmin, Va1442-plasmin, Lys530-plasmin inhibition reaction by alpha 2-antiplasmin as well as interaction of the inhibitor with different derivatives of the plasminogen and its fragments were studied. It was shown that plasmin, mini- and micro-plasmin activity decreased by 97, 88 and 85%, respectively, for equimolar ratio 1:1 of the inhibitor. The value of the inhibition reached its maximum in 1-2, 5-10 and 10-15 min, respectively. The constants of the complex formation rate were 1.4 x 10(6); 1.7 x 10(5) and 6.2 x 10(4) M-1s-1 for the plasmin, mini- and micro-plasmin with alpha 2-antiplasmin, respectively. Both 10(-2) M 6-aminohexanoic acid and 10(-1) M arginine reduced the complex formation rate between plasmin, mini-plasmin and alpha 2-antiplasmin to the value of the rate reaction between micro-plasmin and inhibitor. alpha 2-Antiplasmin bound with all investigated derivatives and fragments of plasminogen. The amount of inhibitor decreased in the series: plasmin, kringle 1-3, kringle 4, mini-plasminogen, micro-plasminogen. The kringle 1-4 and kringle 5 were determined to control the rate of reaction between enzyme and inhibitor, being not necessary for the inhibition. The comparison of the inhibitor interaction with DPP-plasmin, mini-plasminogen and micro-plasminogen displayed the possibility of the additional region existence in catalytic domain. This region participated in the complex with alpha 2-antiplasmin formation. It is supposed that the multisite interaction between plasmin and alpha 2-antiplasmin provides for the specificity and efficiency the inhibitor action. 相似文献
10.
Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor 总被引:33,自引:0,他引:33
Endotoxin-stimulated macrophages hydrolyze fibrin by a plasmin-mediated process in the absence of detectable soluble plasminogen activator (PAs). The data show that macrophages also activate plasmin by a membrane-associated plasminogen activator (PAm). In the presence of endotoxin, PAm activity increases, and plasmin is formed only by PAm. In addition, endotoxin stimulates macrophages to secrete a proteinase inhibitor that blocks PAs activity but not PAm or plasmin activity. The increased PAm activity and the PA inhibitor secretion in response to endotoxin explains the ability of intact macrophages to hydrolyze fibrin in the absence of detectable PAs. Endotoxin, 100 ng/ml, induced an intracellular PA inhibitor in cultured macrophages, and this correlated with accumulation of inhibitor in medium over the cells. The intracellular PA inhibitor was found to be 50--60 kilodaltons by gel chromatography, to be of anionic charge at pH 7.4 and to inhibit urokinase esterolytic and proteolytic activity but not preformed plasmin. These results define two pathways of plasmin formation by intact macrophages and identify the macrophage cell surface as a site of PA activity relatively protected from soluble proteinase inhibitors. 相似文献
11.
12.
13.
14.
Shigeki Ohyama Tomotaka Harada Toshihiro Chikanishi Yutaka Miura Keiji Hasumi 《European journal of biochemistry》2004,271(4):809-820
We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation. 相似文献
15.
16.
17.
18.
19.
Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. 总被引:10,自引:0,他引:10
Plasminogen, plasminogen activator, protease inhibitors, and a proteolytic activity are shown to be present in bovine follicular fluid. Much of the proteolytic activity appears to be due to plasmin. In addition, plasminogen activator activity can be demonstrated in follicle wall homogenates. Evidence that plasmin decreases the tensile strength of follicle wall preparations is also reported. The potential for the involvement of these substances in ovulation is discussed. 相似文献
20.
Intracellular plasminogen activator (PA) was examined in 3T3 and transformed 3T3 cells under various growth conditions to determine whether expression of this activity changes with the growth state. During exponential growth, SV40 and benzpyrene (BP) transformed 3T3 cells exhibited 3- to 5-fold more intracellular PA activity than untransformed 3T3 cells. This relationship changed as the cells exhausted serum factors and arrested in G1. The specific activity of intracellular PA in cells that have retained a serum-sensitive restriction point in G1 (G0) (3T3 and BP 3T3) increased 200- and 20-fold, respectively, at this time, while the level in cells that have lost most growth control mechanisms (SV3T3) remained constant. At confluency, 3T3 cells had considerably more PA than either of their transformed counterparts. Sparse cultures of 3T3 and BP3T3 cells arrest at G1 following serum depravation, and also accumulate high intracellular PA activity. The addition of serum or purified epidermal growth factor to these cultures initiated cell proliferation and resulted in a rapid, actinomycin D-sensitive loss of this activity. Less than 50% of the original activity remained 30 minutes after growth stimulation. This loss of intracellular PA activity did not appear to result from the presence of serum or cellular inhibitors. Intracellular PA activity remained low following growth stimulation. It increased again as the cells traversed through G1. These findings indicate that intracellular PA activity fluctuates with the growth state of cells, and may be related to the cell cycle. Culture conditions which place cells, whether normal or transformed, in G1 arrest lead to increased intracellular PA, while factors that initiate growth again result in a rapid loss of this activity. This behavior is lacking in cells not subject to density-dependent inhibition of growth. Like many other correlates of transformation, comparison of intracellular PA in normal and transformed cells must be defined in terms of the growth state of the cells in question. 相似文献