首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In healthy humans, we recorded the H reflex induced by transcutaneous stimulation of the tibial nerve (recording from the soleus muscle). In subjects in the lying position, we studied changes in the H reflex values after preceding voluntary arm movements realized with a maximum velocity after presentation of an acoustic signal. On the 200th to 300th msec after forearm flexion, long-lasting inhibition of the H reflex developed following a period of initial facilitation and reached the maximum, on average, 700 msec from the moment of the movement. Flexion of the contralateral upper limb in the elbow joint induced deeper inhibition than analogous movement of the ipsilateral arm. Long-lasting clear inhibition of the H reflex developed after arm flexion in the elbow joint but was slightly expressed after finger clenching. After inhibition reached the maximum, its time course was satisfactorily approximated by a logarithmic function of the time interval between the beginning of the conditioning voluntary movement and presentation of the test stimulus. Durations of inhibition calculated using a regression equation were equal to 6.6 sec and 8.5 sec after ipsilateral and contralateral elbow-joint flexions, respectively. Inhibition was not eliminated under conditions of tonic excitation of motoneurons of the tested muscle upon voluntary foot flexion. Long-lasting inhibition of the H reflex was also observed after electrical stimulation-induced flexions of the upper limb. The obtained data indicate that movements of the upper limb cause reflex long-lasting presynaptic inhibition of the soleus-muscle H reflex that can play a noticeable role in redistribution of the muscle tone during motor activity. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 221–227, May–June, 2008.  相似文献   

2.
In electromyographic studies on healthy subjects, we recorded the H reflex from the right m. soleus and measured changes in the magnitude of this reflex response related to voluntary movements of the contralateral lower limb performed according to a visual signal. The effects of back and plantar flexions of the contralateral foot of the tested subject in the lying and standing positions were examined. Changes in the H reflex magnitude began to be recorded 60 to 90 msec prior to voluntary movements of the contralateral limb. When the subject was in the lying position, these changes looked like facilitation of the H reflex at both types of movement of the contralateral foot. When the subject stood, facilitation preceded back flexion of the foot of this extremity, while plantar flexion was preceded by inhibition of the tested H reflex. Our results show that the pattern of preliminary changes in the muscle tone of one of the lower limbs is determined by the type of future movement of another limb and peculiarities of the support function realized by this limb.  相似文献   

3.
In studies on healthy volunteers, we recorded an EMG discharge from the m. soleus corresponding to the H reflex evoked by transcutaneous stimulation of the n. tibialis comm. Changes in the magnitude of this reflex related to realization of brief voluntary movements of the ipsilateral upper limb were examined. The subjects were in a prone position. Fast flexion-extension of the forearm resulted first in 100- to 200-msec-long facilitation of the H reflex begun 30–40 msec before the appearance of EMG activity in the m. biceps brachii; this feature is indicative of the central nature of this effect related to the action of motor programs initiating the forearm movement. Facilitation of the H reflex was followed by its inhibition lasting several seconds. Within an interval corresponding to the maximum suppression of the H response, we tested the effect of additional conditioning stimulation of the n. peroneus comm. Occlusion of the inhibitory effects indicates that the same inhibitory neurons mediate the influences from both the peroneal input and the pathways transmitting inhibitory influences from the neuronal systems controlling upper limb muscles. Contractions of the ipsilateral m. biceps brachii evoked by direct electrical stimulation of the latter also resulted in inhibition of the soleus H reflex, which was rather similar in its time course to the above-mentioned inhibitory effects. There was no inhibition of the reflex after stimulations of the cutaneous receptors and n. medianus. These findings allow us to suppose that long-lasting inhibition of the H reflex induced by voluntary movements of the upper limb results from afferent influences from the receptors of contracting muscles. Such effects can be realized via the propriospinal pathways or long reflex arcs.  相似文献   

4.
The activity of certain muscles that cross the elbow joint complex (EJC) are affected by forearm position and forearm movement during elbow flexion/extension. To investigate whether these changes are based on the musculoskeletal geometry of the joint, a three-dimensional musculotendinoskeletal computer model of the EJC was used to estimate individual muscle activity in multi-degree-of-freedom (df) rapid (ballistic) elbow movements. It is hypothesized that this model could reproduce the major features of elbow muscle activity during multi-df elbow movements using dynamic optimal control theory, given a minimum-time performance criterion. Results from the model are presented and verified with experimental kinematic and electromyographic data from movements that involved both one-df elbow flexion/extension and two-df flexion/extension with forearm pronation/supination. The model demonstrated how the activity of particular muscles is affected by both forearm position and movement, as measured in these experiments and as previously reported by others. These changes were most evident in the flexor muscles and least evident in the extensor muscles. The model also indicated that, for specific one- and two-df movements, activating a muscle that is antagonistic or noncontributory to the movement could reduce the movement time. The major features of muscle activity in multi-df elbow movements appear to be highly dependent on the joint's musculoskeletal geometry and are not strictly based on neural influences or neuroanatomical substrates. Received: 9 May 1997 / Accepted in revised form: 8 December 1998  相似文献   

5.
We studied coordination of central motor commands (СMCs) coming to muscles of the shoulder and shoulder belt in the course of single-joint and two-joint movements including flexion and extension of the elbow and shoulder joints. Characteristics of rectified and averaged EMGs recorded from a few muscles of the upper limb were considered correlates of the CMC parameters. Special attention was paid to coordination of CMCs coming to two-joint muscles that are able to function as common flexors (m. biceps brachii, caput breve, BBcb) and common extensors (m. triceps brachii, caput longum, TBcl) of the elbow and shoulder joints. Upper limb movements used in the tests included planar shifts of the arm from one spatial point to another resulting from either simultaneous changes in the angles of the shoulder and elbow joints or isolated sequential (two-stage) changes in these joint angles. As was found, shoulder muscles providing movements of the elbow with changes in the angle of the elbow joint, i.e., BBcb and TBcl, were also intensely involved in the performance of single-joint movements in the shoulder joint. The CMCs coming to two-joint muscles in the course of two-joint movements appeared, in the first approximation, as sums of the commands received by these muscles in the course of corresponding single-joint movements in the elbow and shoulder joints. Therefore, if we interpret the isolated forearm movement performed due to a change in the angle of the elbow joint as the main motor event, while the shoulder movement is considered the accessory one, we can conclude that realization of a two-joint movement of the upper-limb distal part is based on superposition of CMCs related to basic movements (main and accessory). Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 48–56, January–February, 2009.  相似文献   

6.
In tests on humans, we recorded EMG activity from the muscles flexing and extending the forearm and shoulder in the course of realization of sequential single-joint and simultaneous two-joint movements of the upper limb. As was shown, the shoulder muscles m. biceps brachii and m. triceps brachii are involved in flexion/extension of both elbow and shoulder joints. Central commands sent to the above muscles in the course of a two-joint movement could be considered a superposition of the central commands coming to the same muscles in realization of the corresponding sequential single-joint movements with the same changes in the angles of the elbow and shoulder joints. External loadings applied in the direction of extension of the elbow and shoulder joints induced, in general, similar changes in coordination of the activity of muscles moving the forearm and shoulder under conditions of both single-joint and two-joint movements. These facts allow us to suppose that coordination of the muscle activity in two-joint movements depends to a greater extent on the forces influencing limb links than on the mode of realization of the movements (two sequential single-joint movements vs a two-joint movement corresponding to the above motor events).  相似文献   

7.
Recording of the H-reflex was used to study the changes in the reflex excitability of soleus motoneurons during dorsal and plantar flexions of the ipsilateral and contralateral feet performed with different strengths by 15 healthy subjects. The dorsiflexion of the ipsilateral foot was accompanied by the “classic” reciprocal inhibition of the soleus motoneurons, the degree of the inhibition being directly proportional to the strength of the contraction of pretibial muscles and depending on the presence of foot support. The plantar flexion of the ipsilateral foot was accompanied by changes in reflex excitability, which were inversely proportional to the strength of the flexion. This was apparently related to the activation of a mechanism protecting the muscle against excessive contraction. The dorsal and plantar flexions of the contralateral foot were accompanied by similar changes in the reflex excitability of soleus motoneurons, namely, an increase in the case of weak contraction and a decrease in the case of strong contraction. However, the increase in reflex excitability during contralateral dorsiflexion was smaller and its decrease began at a weaker contraction than in the case of contralateral plantar flexion. The changes in the reflex excitability of soleus motoneurons during movements of the contralateral foot, which were also strength-dependent, confirmed the presence of cross-projections that are likely to be part of the generator of the central pattern of lower limb movement coordination.  相似文献   

8.
Relations between the kinematic parameters of slow (non-ballistic) targeted extension movements in the elbow joint of humans and characteristics of the movement-related EMG activity in the two heads of the m. triceps brachii were analyzed. Test movements were performed under conditions of application of non-inertional external loadings directed toward flexion. It was shown that the movement-related EMG activity of the elbow extensors, similarly to what was observed in the flexors at flexion movements with the same parameters, demonstrates a complex structure and includes dynamic and stationary phases. In the former phase, in turn, initial and main components can be differentiated. The rising edge and decay of the main component of the dynamic extensor EMG phase could be approximated by exponential functions; this component was never split into a few subcomponents. Dependences between the amplitudes of m. triceps brachii EMG phases and the amplitude of the movement (or external loading) were, as a rule, nonlinear but monotonic. An increase in the test movement velocity led to an increase in the rate of rise of the rising edge of the dynamic EMG phase, while an increment in the amplitude was less significant. Under the used test conditions, the activity of the elbow extensors was usually accompanied by some coactivation of the antagonists (m. biceps brachii). It is concluded that motor commands coming to the elbow extensors at performance of the extension test movements differ from motor commands to the flexors at analogous flexion test movements by a simpler structure and more tonic pattern. Biomechanical specificities of fixation of the mentioned muscle groups to the arm bones (stability of the moment for application of the extensor force under conditions of changing the joint angle vs variable moment of the flexor force) are considered one of the main reasons for such specificity of the patterns of the extensor and flexor motor commands.  相似文献   

9.
We studied changes of the H reflex recorded from the m. soleus, which were evoked by conditioning transcutaneous stimulation of the n. tibialis and n. peroneous comm. of the contralateral leg. In both cases, rather similar two-phase changes in the amplitude of the tested H reflex were observed. After a latent period (50 to 60 msec), the reflex was facilitated for about 300 msec, with the maximum at an about 100-msec-long interval. Then, facilitation was replaced by inhibition; the time course of the latter at test intervals longer than 500 msec could be satisfactorily approximated by a logarithmic curve. The mean durations of inhibition calculated with the use of a least-square technique were 4.0 and 2.7 sec in the cases of stimulation of n. tibialis and n. peroneous comm., respectively. Facilitation of the reflex was initiated with the intensity of conditioning stimulation corresponding to the threshold for excitation of cutaneous receptors. Facilitation could also be evoked by electrical stimulation of the skin in the contralateral popliteal dimple outside the projections of the above-mentioned nerves. Inhibition of the H reflex was evoked only with greater intensities of transcutaneous stimulation of the contralateral nerves corresponding to activation of low-threshold afferents of the above-mentioned nerves. The examined inhibition of the H reflex is probably of a presynaptic nature because it was not eliminated by tonic activation of the motoneurons of the tested muscle evoked by voluntary sole flexion. Long-lasting contralateral presynaptic inhibition can play a noticeable role in redistribution of the tone of skeletal muscles in the course of the motor activity. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 372–378, July–August, 2005.  相似文献   

10.
In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36°. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. “to do the same no matter what the motor did”. In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis,r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.  相似文献   

11.
For repeated point-to-point arm movements it is often assumed that motor commands are customized in a trial-to-trial manner, based on previous endpoint error. To test this assumption, we perturbed movement execution without affecting the endpoint error by using a modest manipulation of inertia. Participants made point-to-point elbow flexion and extension movements in the horizontal plane, under the instruction to move as fast as possible from one target area to another. In selected trials the moment of inertia of the lower arm was increased or decreased by 25%. First, we found that an unexpected increase or decrease of inertia did not affect the open loop controlled part of the movement path (and thus endpoint error was not affected). Second, we found that when the increased or decreased inertia was presented repeatedly, after 5-11 trials motor commands were customized: the first 100ms of agonistic muscle activity in the smoothed and rectified electromyographic signal of agonistic muscles was higher for the high inertia compared to the low inertia. We conclude that endpoint error is not the only parameter that is used to evaluate if motor commands lead to movements as planned.  相似文献   

12.
We studied coordination of central motor commands (CMCs) coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm. Dependences of the characteristics of these commands on the direction of the effort and rate of its generation were analyzed. Amplitudes of rectified and averaged EMGs recorded from a number of shoulder belt and shoulder muscles were considered correlates of the CMC intensity. The development of the effort of a given direction and rate of rise was realized in the horizontal-plane operational space; the arm position corresponded to the 30 deg angle in the shoulder joint (external angle with respect to the frontal plane) and 90 deg angle in the elbow joint. We plotted sector diagrams of the relative changes in the level of dynamic and stationary phases of EMG activity of the studied muscles for the entire set of directions of the efforts generated with different rates of rise. In the course of formation of rapid two-joint isometric efforts, realization of nonsynergic motor tasks (extension of one joint and flexion of another one, and vice versa) required significant activation of muscles of different functional directions for both joints. Time organization of EMG activity of extensors and flexors of the shoulder and elbow joints related to the maximum and relatively rapid generation of the effort (rise time 0.12 to 0.13 and 0.25 sec, respectively) was rather complex and included dynamic and stationary phases. With these time parameters of generation of the efforts (both flexion and extension), the appearance at the stationary effort of 40 N was controlled based on coordinated interaction of dynamic phases of the activation of agonistic and antagonistic muscles. It is concluded that CMCs coming to extensors and flexors of both joints upon generation of rapid isometric efforts are rather similar in their parameters to those under conditions of realization of the forearm movements in the space in an isotonic mode.  相似文献   

13.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

14.
In tests on four volunteers, we examined coordination of central motor commands (CMCs) controlling slow two-joint movements of the arm within the horizontal plane. Current amplitudes of EMGs recorded from six muscles of the shoulder belt and shoulder and subjected to full-wave rectifying and low-frequency filtration were considered correlates of these commands. In particular, we studied the dependence of coordination of CMCs on the direction of an external force applied to the distal forearm part. As was found, coordination of CMCs significantly depends on the direction of the force flexing the elbow joint. According to our observations, EMGs of definite muscles in the case of performance of a two-joint movement can, in a first approximation, be presented as linear combinations of the EMGs recorded in the course of separate sequential single-joint movements under conditions of shifting the reference point of the hand toward the same point of the operational space as that in the two-joint movement. These data can be interpreted as confirmation of the principle of superposition of elementary CMCs in the performance of complex movements of the extremity.  相似文献   

15.
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.  相似文献   

16.
Normal subjects and cerebellar patients were instructed to arrest “as soon as possible” a ballistically initiated flexion movement of the forearm. The intentional actions consist essentially of a downward torque, the peak value of which has almost a constant latency (about 200 msec) from the beginning of the movement. A variable number of oscillations precede the arrest of the movement, the characteristics of which depend on the initial velocity of the flexion and on the mass with which the forearm is loaded. The motor commands responsible for the intentionally produced downward torque are controlled centrally as to leave the ratio between the peak values of the angular velocity which precede and follow the peak of the torque almost constant, under all conditions. To describe the oscillations a simple analytical model was proposed which includes the mechanical as well as the reflex factors, the latter under the form of a delayed velocity term. The satisfactory fitting of this model to the experimental findings permitted to establish the following points:
  1. The oscillations are sustained by both a mechanical and a reflex stiffness. The contribution of the reflex loop is however quantitatively dominant since it accounts for about 75% of the inertial torque. It is fairly constant over the range of frequency of the oscillations considered.
  2. Under the imposed experimental conditions angular velocity appears to be the parameter of the movement which is predominantly sensed and fed back by the reflex loop.
Data were also presented on the performance of the motor task by patients who underwent surgical ablations of the cerebellar cortex. Comparison of these results with those of normal subjects strongly supports the hypothesis that cerebellar-related activities are instrumental in determining the sensitivity of the stretch reflex to angular velocity.  相似文献   

17.
Human soleus H reflexes are depressed with passive movement of the leg. We investigated the limb segment origin of this inhibition. In the first experiment, H reflexes were evoked in four subjects during (1) passive pedaling movement of the test leg at 60 rpm; (2 and 3) pedaling-like flexion and extension of the hip and the knee of the test leg separately; and (4) stationary controls. In the second experiment, with the test leg stationary, the same series of movements occurred in the opposite leg. Rotation of the hip or the knee of the test leg significantly reduced mean reflex amplitudes (p > 0.01) to levels similar to those for whole-leg movement (mean H reflexes: stationary, 71%; test leg pedaling movement, 10%; knee rotation, 15%; hip rotation, 13% [all data are given as percentages of Mmax]). The angle of the stationary joint did not significantly affect the results. Rotation of the contralateral hip significantly reduced mean reflex magnitudes. Rotation of the contralateral knee had a similar effect in three of the four subjects. We infer that a delimited field of receptors induces the movement conditioning of both the ipsilateral and contralateral spinal paths. It appears that somatosensory receptor discharge from movement of the hip or knee of either leg induces inhibition as the foundation for the modulation of H reflexes observed during human movement.  相似文献   

18.
Hoffmann reflexes (H reflexes) were elicited from both legs simultaneously in human subjects at varying intervals after a reaction signal (RS) in a binary choice reaction time task. A left light RS required a rapid plantar flexion of the left foot and a right light RS required a similar rapid response of the right foot. A large faciliataion of reflex amplitude occurred only in the muscle involved in the movement (right of left soleus). The timing of the facilitation indicated that a decision about the status of the RS occurred within 200 msec and probably was completed somewhat earlier. Furthermore, the facilitation of the H reflexes was shown to be closely linked with the organization required for the contractions of the responding muscle. The results are considered in the light of hypothesized mechanisms regulating voluntary movement.  相似文献   

19.
We have tested the hypothesis that agonist and antagonist muscle fatigue could affect the final position of rapid, discrete movements. Six subjects performed consecutive elbow flexion and extension movements between two targets, with their eyes closed prior to, and after fatiguing the elbow extensor muscles. The results demonstrate that elbow extension movements performed in the post-test period systematically undershot the final position as compared to pre-test movements. However, attainment of the aimed final position in elbow flexion movements was unaffected by fatiguing of the extensor muscles. Undershoot of the final position obtained in extension movements was associated with agonist muscle fatigue, a result that was expected from the point of view of current motor control theories, and that could be explained by a reduced ability of the shortening muscle to exert force. On the other hand, the absence of the expected overshoot of the final position when the antagonist is fatigued, indicates the involvement of various reflex and/or central mechanisms operating around the stretched muscle that could contribute to returning the limb to the standard final position after a brief prominent overshoot.  相似文献   

20.

Background

Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.

Methods

Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity.

Results

Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001).

Conclusions

Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号