首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Selectin-mediated adhesion of tumor cells to platelets, leukocytes, and endothelial cells may regulate their hematogenous dissemination in the microvasculature. We recently identified CD44 variant isoforms (CD44v) as functional P-, but not E- or L-, selectin ligands on colon carcinoma cells. Moreover, an approximately 180-kDa sialofucosylated glycoprotein(s) mediated selectin binding in CD44-knockdown cells. Using immunoaffinity chromatography and tandem mass spectrometry, we identify this glycoprotein as the carcinoembryonic antigen (CEA). Blot rolling assays and flow-based adhesion assays using microbeads coated with CEA immunopurified from LS174T colon carcinoma cells and selectins as substrate reveal that CEA possesses E- and L-, but not P-, selectin ligand activity. CEA on CD44-knockdown LS174T cells exhibits higher HECA-452 immunoreactivity than CEA on wild-type cells, suggesting that CEA functions as an alternative acceptor for selectin-binding glycans. The enhanced expression of HECA-452 reactive epitopes on CEA from CD44-knockdown cells correlates with the increased CEA avidity for E- but not L-selectin. Through the generation of stable knockdown cell lines, we demonstrate that CEA serves as an auxiliary L-selectin ligand, which stabilizes L-selectin-dependent cell rolling against fluid shear. Moreover, CEA and CD44v cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin at elevated shear stresses. The novel finding that CEA is an E- and L-selectin ligand may explain the enhanced metastatic potential associated with tumor cell CEA overexpression and the supportive role of selectins in metastasis.  相似文献   

2.
Selectin-mediated binding of tumor cells to platelets, leukocytes, and vascular endothelium may regulate their hematogenous spread in the microvasculature. We recently reported that CD44 variant isoforms (CD44v) on LS174T colon carcinoma cells possess selectin binding activity. Here we extended those findings by showing that T84 and Colo205 colon carcinoma cells bind selectins via sialidase-sensitive O-linked glycans presented on CD44v, independent of heparan and chondroitin sulfate. To assess the functional role of CD44v in selectin-mediated binding, we quantified the adhesion to selectins of T84 cell subpopulations sorted based on their CD44 expression levels and stable LS174T cell lines generated using CD44 short hairpin RNA. High versus low CD44-expressing T84 cells tethered more efficiently to P- and L-selectin, but not E-selectin, and rolled more slowly on P- and E-selectin. Knocking down CD44 expression on LS174T cells inhibited binding to P-selectin and increased rolling velocities over P- and L-selectin relative to control-transfected cells, without affecting tethering and rolling on E-selectin, however. Blot rolling analysis revealed the presence of alternative sialylated glycoproteins with molecular masses of approximately 170 and approximately 130 kDa, which can mediate selectin binding in CD44-knockdown cells. Heparin diminishes the avidity of colon carcinoma cells for P- and L-selectin, which may compromise integrin-mediated firm adhesion to host cells and mitigate metastasis. Our finding that CD44v is a functional P-selectin ligand on colon carcinoma provides a novel perspective on the enhanced metastatic potential associated with tumor CD44v overexpression and the role of selectins in metastasis.  相似文献   

3.
Selectins and fibrin(ogen) play key roles in the hematogenous dissemination of tumor cells, and especially of colon carcinomas. However, the fibrin(ogen) receptor(s) on colon carcinoma cells has yet to be defined along with its relative capacity to bind fibrinogen versus fibrin under flow. Moreover, the functional P-selectin ligand has yet to be validated using intact platelets rather than purified selectin substrates. Using human CD44-knockdown and control LS174T cells, we demonstrate the pivotal involvement of CD44 in the P-selectin-mediated binding to platelets in shear flow. Quantitative comparisons of the binding kinetics of LS174T versus P-selectin glycoprotein ligand-1 (PSGL-1)-expressing THP-1 cells to activated platelets reveal that the relative avidity of P-selectin-CD44 binding is more than sevenfold lower than that of P-selectin-PSGL-1 interaction. Using CD44-knockdown LS174T cells and microspheres coated with CD44 immunoprecipitated from control LS174T cells, and purified fibrin(ogen) as substrate, we provide the first direct evidence that CD44 also acts as the major fibrin, but not fibrinogen, receptor on LS174T colon carcinoma cells. Interestingly, binding of plasma fibrin to CD44 on the colon carcinoma cell surface interferes with the P-selectin-CD44 molecular interaction and diminishes platelet-LS174T heteroaggregation in the high shear regime. Cumulatively, our data offer a novel perspective on the apparent metastatic potential associated with CD44 overexpression on colon carcinoma cells and the critical roles of P-selectin and fibrin(ogen) in metastatic spread and provide a rational basis for the design of new therapeutic strategies to impede metastasis.  相似文献   

4.
Expression of L-selectin on human hematopoietic cells (HC) is associated with a higher proliferative activity and a more rapid engraftment after hematopoietic stem cell transplantation. Two L-selectin ligands are expressed on human HCs, P-selectin glycoprotein ligand-1 (PSGL-1) and a specialized glycoform of CD44 (hematopoietic cell E- and L-selectin ligand, HCELL). Although the structural biochemistry of HCELL and PSGL-1 is well characterized, the relative capacity of these molecules to mediate L-selectin-dependent adhesion has not been explored. In this study, we examined under shear stress conditions L-selectin-dependent leukocyte adhesive interactions mediated by HCELL and PSGL-1, both as naturally expressed on human HC membranes and as purified molecules. By utilizing both Stamper-Woodruff and parallel-plate flow chamber assays, we found that HCELL displayed a 5-fold greater capacity to support L-selectin-dependent leukocyte adherence across a broad range of shear stresses compared with that of PSGL-1. Moreover, L-selectin-mediated leukocyte binding to immunopurified HCELL was consistently >5-fold higher than leukocyte binding to equivalent amounts of PSGL-1. Taken together, these data indicate that HCELL is a more avid L-selectin ligand than PSGL-1 and may be the preferential mediator of L-selectin-dependent adhesive interactions among human HCs in the bone marrow.  相似文献   

5.
The ability of tumor cells to metastasize hematogenously is regulated by their interactions with polymorphonuclear leukocytes (PMNs). However, the mechanisms mediating PMN binding to tumor cells under physiological shear forces remain largely unknown. This study was designed to characterize the molecular interactions between PMNs and tumor cells as a function of the dynamic shear environment, using two human colon adenocarcinoma cell lines (LS174T and HCT-8) as models. PMN and colon carcinoma cell suspensions, labeled with distinct fluorophores, were sheared in a cone-and-plate rheometer in the presence of the PMN activator fMLP. The size distribution and cellular composition of formed aggregates were determined by flow cytometry. PMN binding to LS174T cells was maximal at 100 s(-1) and decreased with increasing shear. At low shear (100 s(-1)) PMN CD11b alone mediates PMN-LS174T heteroaggregation. However, L-selectin, CD11a, and CD11b are all required for PMN binding to sialyl Lewis(x)-bearing LS174T cells at high shear (800 s(-1)). In contrast, sialyl Lewis(x)-low HCT-8 cells fail to aggregate with PMNs at high shear conditions, despite extensive adhesive interactions at low shear. Taken together, our data suggest that PMN L-selectin initiates LS174T cell tethering at high shear by binding to sialylated moieties on the carcinoma cell surface, whereas the subsequent involvement of CD11a and CD11b converts these transient tethers into stable adhesion. This study demonstrates that the shear environment of the vasculature modulates the dynamics and molecular constituents mediating PMN-tumor cell adhesion.  相似文献   

6.
This study compares the effects offluid shear on the kinetics, adhesion efficiency, stability, andmolecular requirements of polymorphonuclear leukocyte (PMN) binding totwo colon adenocarcinoma cell-lines, theCD54-negative/sLex-bearing LS174T cells and theCD54-expressing/sLex-low HCT-8 cells. The efficiency ofPMN-colon carcinoma heteroaggregation decreases with increasing shear,with PMNs binding HCT-8 more efficiently than LS174T cells at low shear(50-200 s1). In the low shear regime, CD11b issufficient to mediate PMN binding to LS174T cells. In contrast, bothCD11a and CD11b contribute to PMN-HCT-8 heteroaggregation, with CD54 onHCT-8 cells acting as a CD11a ligand at early time points. At highshear, only PMN-LS174T heteroaggregation occurs, which is initiated byPMN L-selectin binding to a sialylated, O-linked, protease-sensitiveligand on LS174T cells. PMN-LS174T heteroaggregation is primarilydependent on the intercellular contact duration (or shear rate),whereas PMN-HCT-8 binding is a function of both the intercellularcontact duration and the applied force (or shear stress). Cumulatively, these studies suggest that fluid shear modulates the kinetics andmolecular mechanisms of PMN-colon carcinoma cell aggregation.

  相似文献   

7.
Jacobs PP  Sackstein R 《FEBS letters》2011,585(20):3148-3158
Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells (CTCs) home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that hematopoietic cell E-/L-selectin ligand (HCELL), a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of CTCs.  相似文献   

8.
Cell migration in blood flow is mediated by engagement of specialized adhesion molecules that function under hemodynamic shear conditions, and many of the effectors of these adhesive interactions, such as the selectins and their ligands, are well defined. However, in contrast, our knowledge of the adhesion molecules operant under lymphatic flow conditions is incomplete. Among human malignancies, head and neck squamous cell cancer displays a marked predilection for locoregional lymph node metastasis. Based on this distinct tropism, we hypothesized that these cells express adhesion molecules that promote their binding to lymphoid tissue under lymphatic fluid shear stress. Accordingly, we investigated adhesive interactions between these and other cancer cells and the principal resident cells of lymphoid organs, lymphocytes. Parallel plate flow chamber studies under defined shear conditions, together with biochemical analyses, showed that human head and neck squamous cell cancer cells express heretofore unrecognized L-selectin ligand(s) that mediate binding to lymphocyte L-selectin at conspicuously low shear stress levels of 0.07-0.08 dynes/cm(2), consistent with lymphatic flow. The binding of head and neck squamous cancer cells to L-selectin displays canonical biochemical features, such as requirements for sialylation, sulfation, and N-glycosylation, but displays a novel operational shear threshold differing from all other L-selectin ligands, including those expressed on colon cancer and leukemic cells (e.g. HCELL). These data define a novel class of L-selectin ligands and expand the scope of function for L-selectin within circulatory systems to now include a novel activity within shear stresses characteristic of lymphatic flow.  相似文献   

9.
The lack of homing ability possibly reduces the healing potential of bone-marrow-derived mesenchymal stem cells (MSCs). Therefore, transforming native CD44 on MSCs into a hematopoietic cell E-/L-selectin ligand (HCELL) that possesses potent E-selectin affinity might enhance the homing and regenerative abilities of MSCs. Through fucosyltransferase VI (FTVI) transfection, MSCs were fucosylated on N-glycans of CD44 to become HCELL positive, thus interacting with E-selectin on injured endothelial cells. HCELL expression facilitated MSC homing in kidneys within 24 h after injury and reduced lung stasis. An in vitro adhesion assay revealed that transfection enhanced the association between MSCs and hypoxic endothelial cells. In mice treated with HCELL-positive MSCs, the injured kidneys exhibited clusters of homing MSCs, whereas MSCs were rarely observed in mouse kidneys treated with HCELL-negative MSCs. Most MSCs were initially localized at the renal capsule, and some MSCs later migrated inward between tubules. Most homing MSCs were in close contact with inflammatory cells without tubular transdifferentiation. Furthermore, HCELL-positive MSCs substantially alleviated renal injury, partly by enhancing the polarization of infiltrating macrophages. In conclusion, engineering the glycan of CD44 on MSCs through FTVI transfection might enhance renotropism and the regenerating ability of MSCs in ischemic kidney injury.  相似文献   

10.
Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen).  相似文献   

11.
The capacity to direct migration ('homing') of blood-borne cells to a predetermined anatomic compartment is vital to stem cell-based tissue engineering and other adoptive cellular therapies. Although multipotent mesenchymal stromal cells (MSCs, also termed 'mesenchymal stem cells') hold the potential for curing generalized skeletal diseases, their clinical effectiveness is constrained by the poor osteotropism of infused MSCs (refs. 1-3). Cellular recruitment to bone occurs within specialized marrow vessels that constitutively express vascular E-selectin, a lectin that recognizes sialofucosylated determinants on its various ligands. We show here that human MSCs do not express E-selectin ligands, but express a CD44 glycoform bearing alpha-2,3-sialyl modifications. Using an alpha-1,3-fucosyltransferase preparation and enzymatic conditions specifically designed for treating live cells, we converted the native CD44 glycoform on MSCs into hematopoietic cell E-selectin/L-selectin ligand (HCELL), which conferred potent E-selectin binding without effects on cell viability or multipotency. Real-time intravital microscopy in immunocompromised (NOD/SCID) mice showed that intravenously infused HCELL(+) MSCs infiltrated marrow within hours of infusion, with ensuing rare foci of endosteally localized cells and human osteoid generation. These findings establish that the HCELL glycoform of CD44 confers tropism to bone and unveil a readily translatable roadmap for programming cellular trafficking by chemical engineering of glycans on a distinct membrane glycoprotein.  相似文献   

12.
This study was undertaken to investigate the kinetics and molecular requirements of platelet binding to tumor cells in bulk suspensions subjected to a uniform linear shear field, using a human colon adenocarcinoma cell line (LS174T) as a model. The effects of shear rate (20-1000 s(-1)), shear exposure time (30-300 s), shear stress (at constant shear rate by adjusting the viscosity of the medium from 1.3-2.6 cP), cell concentration, and platelet activation on platelet-LS174T heteroaggregation were assessed. The results indicate that hydrodynamic shear-induced collisions augment platelet-LS174T binding, which is further potentiated by thrombin/GPRP-NH(2). Peak adhesion efficiency occurs at low shear and decreases with increasing shear. Intercellular contact duration is the predominant factor limiting heteroaggregation at shear rates up to 200 s(-1), whereas these interactions become shear stress-sensitive at > or = 400 s(-1). Heteroaggregation increases with platelet concentration due to an elevation of the intercellular collision frequency, whereas adhesion efficiency remains nearly constant. Moreover, hydrodynamic shear affects the receptor specificity of activation-dependent platelet binding to LS174T cells, as evidenced by the transition from a P-selectin-independent/Arg-Gly-Asp (RGD)-dependent process at 100 s(-1) to a P-selectin/alpha(IIb)beta(3)-dependent interaction at 800 s(-1). This study demonstrates that platelet activation and a fluid-mechanical environment representative of the vasculature affect platelet-tumor cell adhesive interactions pertinent to the process of blood-borne metastasis.  相似文献   

13.
TES-23 monoclonal antibody (MAb), which targets rat CD44H on tumor vascular endothelial cells (TEC), dominantly reacted to human activated CD44 rather than human inactive CD44. TES-23 MAb reacted to HT-1080 fibrosarcoma cells almost comparably to anti-human CD44 MAb and moderately to HUVEC; however, it hardly reacted to PBMC. The binding of soluble hyaluronate to HT-1080 cells and HUVEC was clearly noted, but not to PBMC. In addition, stimulation with phorbol 12-myristate 13-acetate induced soluble hyaluronate binding of MOLT-4 human T lymphoma cells and relatively increased the reactivity of TES-23 MAb. Our results suggest that TES-23 MAb can potentially recognize human activated CD44 and hence might be potentially useful for the treatment of human solid tumors containing TEC that express activated CD44.  相似文献   

14.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

15.

Background

The regenerative and immunomodulatory properties of human mesenchymal stromal cells (hMSCs) have raised great hope for their use in cell therapy. However, when intravenously infused, hMSCs fail to reach sites of tissue injury. Fucose addition in α(1,3)-linkage to terminal sialyllactosamines on CD44 creates the molecule known as hematopoietic cell E-/L-selectin ligand (HCELL), programming hMSC binding to E-selectin that is expressed on microvascular endothelial cells of bone marrow (BM), skin and at all sites of inflammation. Here we describe how this modification on BM-derived hMSCs (BM-hMSCs) can be adapted to good manufacturing practice (GMP) standards.

Methods

BM-hMSCs were expanded using xenogenic-free media and exofucosylated using α(1,3)-fucosyltransferases VI (FTVI) or VII (FTVII). Enforced fucosylation converted CD44 into HCELL, and HCELL formation was assessed using Western blot, flow cytometry and cell-binding assays. Untreated (unfucosylated), buffer-treated and exofucosylated BM-hMSCs were each analyzed for cell viability, immunophenotype and differentiation potential, and E-selectin binding stability was assessed at room temperature, at 4°C, and after cryopreservation. Cell product safety was evaluated using microbiological testing, karyotype analysis, and c-Myc messenger RNA (mRNA) expression, and potential effects on genetic reprogramming and in cell signaling were analyzed using gene expression microarrays and receptor tyrosine kinase (RTK) phosphorylation arrays.

Results

Our protocol efficiently generates HCELL on clinical-scale batches of BM-hMSCs. Exofucosylation yields stable HCELL expression for 48 h at 4°C, with retained expression after cell cryopreservation. Cell viability and identity are unaffected by exofucosylation, without changes in gene expression or RTK phosphorylation.

Discussion

The described exofucosylation protocol using xenogenic-free reagents enforces HCELL expression on hMSCs endowing potent E-selectin binding without affecting cell viability or native phenotype. This described protocol is readily scalable for GMP-compliant clinical production.  相似文献   

16.
The CD44 inhibitor Lutheran [In(Lu)]-related p80 molecule has recently been shown to be identical to the Hermes-1 lymphocyte homing receptor and to the human Pgp-1 molecule. We have determined the effect of addition of CD44 antibodies to in vitro activation assays of PBMC. CD44 antibodies did not induce PBMC proliferation alone, but markedly enhanced PBMC proliferation induced by a mitogenic CD2 antibody pair or by CD3 antibody. CD44 antibody addition had no effect upon PBMC activation induced by PHA or tetanus toxoid. CD44 antibody enhancement of CD2 antibody-induced T cell activation was specific for mature T cells as thymocytes could not be activated in the presence of combinations of CD2 and CD44 antibodies. CD44 antibody enhancement of CD2-mediated T cell triggering occurred if CD44 antibody was placed either on monocytes or on T cells. In experiments with purified monocyte and T cell suspensions, CD44 antibodies A3D8 and A1G3 augmented CD2-mediated T cell activation by three mechanisms. First, CD44 antibody binding to monocytes induced monocyte IL-1 release, second, CD44 antibodies enhanced the adhesion of T cells and monocytes in CD2 antibody-stimulated cultures, and third, CD44 antibodies augmented T cell IL-2 production in response to CD2 antibodies. Thus, ligand binding to CD44 molecules on T cells and monocytes may regulate numerous events on both cell types that are important for T cell activation. Given that recent data suggest that the CD44 molecule may bind to specific ligands on endothelial cells (vascular addressin) and within the extracellular matrix (collagen, fibronectin), these data raise the possibility that binding of T cells to endothelial cells or extracellular matrix proteins may induce or up-regulate T cell activation in inflammatory sites.  相似文献   

17.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

18.
The adhesion of tumour cells to the endothelial cells of blood vessels of the microcirculation represents a crucial step in haematogenous metastasis formation. Similar to leukocyte extravasation, selectins mediate initial tumour cell rolling on endothelium. An additional mechanism of leukocyte adhesion to endothelial cells is mediated by hyaluronan (HA). However, data on the interaction of tumour cells with hyaluronan under shear stress are lacking. The expression of the hyaluronan binding protein CD44 on tumour cell surfaces was evaluated using flow cytometry. The adhesion of tumour cells to HA with regard to adhesive events and rolling velocity was determined in flow assays in the human small cell lung cancer (SCLC) cell lines SW2, H69, H82, OH1 and OH3, the colon carcinoma cell line HT29 and the melanoma cell line MeWo. Hyaluronan deposition in human and mouse lung blood vessels was histochemically determined. MeWo adhered best to HA followed by HT29. SCLC cell lines showed the lowest CD44 expression on the cell surface and lowest number of adhesive events. While hyaluronan was deposited in patches in the microvasculature of the alveolar septum in the human lung, it was only present in the periarterial space in the mouse lung. Certain tumour entities bind to HA under physiological shear stresses so that HA can be considered a further ligand for cell extravasation in haematogenous metastasis. As hyaluronan is deposited within the pulmonary microvasculature, it may well serve as a ligand for its binding partner CD44, which is expressed by many tumour cells.  相似文献   

19.
Selectin-mediated interactions in the vasculature promote metastatic spread by facilitating circulating tumor cell binding to selectin-expressing host cells. Therefore, identifying the selectin ligand(s) on tumor cells is critical to the prevention of blood-borne metastasis. A current challenge is to distinguish between structures expressed by circulating tumor cells that can bind selectins in vitro from the functional ligands whose depletion suppresses selectin-dependent binding under flow in vivo. Interestingly, podocalyxin (PODXL), which can bind E- and L-selectin, is upregulated in a number of cancers, including those of the breast, colon, and pancreas. In this work, we show that metastatic pancreatic cancer cells overexpress PODXL compared with nonmalignant pancreatic epithelial cells. We further demonstrate via tissue microarray that 69% of pancreatic ductal adenocarcinomas stain positive for PODXL. In cases of focal expression, positive staining is restricted to the invasive front of primary tumors. By combining immunoblot, immunodepletion, short-hairpin RNA-mediated gene silencing, and flow-based adhesion assays, we evaluated the functional role of sialofucosylated PODXL in selectin-mediated adhesion under flow. Our data indicate that sialofucosylated PODXL is a functional E- and L-selectin ligand expressed by metastatic pancreatic cancer cells, as specific depletion of this molecule from the cell surface significantly interferes with selectin-dependent interactions. Cumulatively, these data support a correlation between sialofucosylated PODXL expression and enhanced binding to selectins by metastatic pancreatic cancer cells and offer additional perspective on the upregulation of PODXL in aggressive cancers.  相似文献   

20.
An in vitro model of T cell adhesion to human umbilical vein endothelial cells (HUVEC) and transendothelial migration was used to determine whether the activation state of the T cell or cytokine exposure of the HUVEC altered T cell-HUVEC interactions or receptor utilization. Stimulation of T cells with the activator of protein kinase C, phorbol dibutyrate (PDB) alone or in combination with the calcium ionophore, ionomycin increased their binding to HUVEC. Much of the binding of control and activated T cells to HUVEC was mediated by leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18), because mAb to either chain of this molecule inhibited binding substantially, but not completely. Activation of HUVEC with IL-1 also increased binding of T cells. Binding of control T cells to IL-1-stimulated HUVEC, however, was found to be LFA-1 independent, because mAb to CD11a/CD18 failed to block the interaction. In contrast, binding of activated T cells to IL-1-stimulated HUVEC was partially inhibited by mAb to LFA-1. Binding of activated T cells to IL-1-stimulated HUVEC also involved CD44 because this interaction was partially blocked by mAb to this determinant. When T cell migration was analyzed, it was found that the migration of PDB-activated T cells was three to four-fold more than that of control T cells. Migration through HUVEC and random migration were both enhanced by PDB stimulation. However, when the T cells were costimulated with PDB and ionomycin, migration was not increased above that of control T cells. PDB-activated T cells appeared to use LFA-1 for migration regardless of the activation status of the HUVEC, because mAb to CD11a/CD18 partially blocked their migration after binding to HUVEC. There was also a modest inhibition of PDB-activated T cell migration by mAb to CD44. In contrast, migration of control T cells involved neither LFA-1 nor CD44. Finally, binding of control T cells to high endothelial venules of peripheral lymphoid tissue was found to be CD11a/CD18 and CD44 independent, and completely inhibited by activation with either PDB or the combination of PDB and ionomycin. These results demonstrate that T cells use LFA-1 and CD44 as well as other as yet unidentified adhesion receptors for interactions with HUVEC, and that use of these adhesion receptors is mutable and related to the activation state of the T cell and cytokine stimulation of the HUVEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号