首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of the AE2/SLC4A2 anion exchanger is modulated acutely by pH, influencing the transporter's role in regulation of intracellular pH (pHi) and epithelial solute transport. In Xenopus oocytes, heterologous AE2-mediated Cl/Cl and Cl/HCO3 exchange are inhibited by acid pHi or extracellular pH (pHo). We have investigated the importance to pH sensitivity of the eight histidine (His) residues within the AE2 COOH-terminal transmembrane domain (TMD). Wild-type mouse AE2-mediated Cl/Cl exchange, measured as DIDS-sensitive 36Cl efflux from Xenopus oocytes, was experimentally altered by varying pHi at constant pHo or varying pHo. Pretreatment of oocytes with the His modifier diethylpyrocarbonate (DEPC) reduced basal 36Cl efflux at pHo 7.4 and acid shifted the pHo vs. activity profile of wild-type AE2, suggesting that His residues might be involved in pH sensing. Single His mutants of AE2 were generated and expressed in oocytes. Although mutation of H1029 to Ala severely reduced transport and surface expression, other individual His mutants exhibited wild-type or near-wild-type levels of Cl transport activity with retention of pHo sensitivity. In contrast to the effects of DEPC on wild-type AE2, pHo sensitivity was significantly alkaline shifted for mutants H1144Y and H1145A and the triple mutants H846/H849/H1145A and H846/H849/H1160A. Although all functional mutants retained sensitivity to pHi, pHi sensitivity was enhanced for AE2 H1145A. The simultaneous mutation of five or more His residues, however, greatly decreased basal AE2 activity, consistent with the inhibitory effects of DEPC modification. The results show that multiple TMD His residues contribute to basal AE2 activity and its sensitivity to pHi and pHo. pH regulation; histidine residues; Cl/HCO3 exchange  相似文献   

2.
Three distinct mechanisms of HCO3- secretion in rat distal colon   总被引:1,自引:0,他引:1  
HCO3 secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3 secretion have revealed evidence of lumen Cl dependence, suggesting a role for apical membrane Cl/HCO3 exchange, direct examination of HCO3 secretion in isolated crypt from rat distal colon did not identify Cl-dependent HCO3 secretion but did reveal cAMP-induced, Cl-independent HCO3 secretion. Studies were therefore initiated to determine the characteristics of HCO3 secretion in isolated colonic mucosa to identify HCO3 secretion in both surface and crypt cells. HCO3 secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3 secretion (5.6 ± 0.03 µeq·h–1·cm–2) was abolished by removal of either lumen Cl or bath HCO3; this Cl-dependent HCO3 secretion was also inhibited by 100 µM DIDS (0.5 ± 0.03 µeq·h–1·cm–2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl channel blocker. 8-Bromo-cAMP induced Cl-independent HCO3 secretion (and also inhibited Cl-dependent HCO3 secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl-independent, DIDS-insensitive, saturable HCO3 secretion that was not inhibited by NPPB. Three distinct HCO3 secretory mechanisms were identified: 1) Cl-dependent secretion associated with apical membrane Cl/HCO3 exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3 exchange. chloride/bicarbonate exchange; short-chain fatty acid/bicarbonate exchange; anion channel; pH stat  相似文献   

3.
Association of some plasma membrane bicarbonate transporters with carbonic anhydrase enzymes forms a bicarbonate transport metabolon to facilitate metabolic CO2-HCO3 conversions and coupled HCO3 transport. The transmembrane carbonic anhydrase, CAIX, with its extracellular catalytic site, is highly expressed in parietal and other cells of gastric mucosa, suggesting a role in acid secretion. We examined in transfected HEK293 cells the functional and physical interactions between CAIX and the parietal cell Cl/HCO3 exchanger AE2 or the putative Cl/HCO3 exchanger SLC26A7. Coexpression of CAIX increased AE2 transport activity by 28 ± 7% and also activated transport mediated by AE1 and AE3 (32 ± 10 and 37 ± 9%, respectively). In contrast, despite a transport rate comparable to that of AE3, coexpressed CAIX did not alter transport associated with SLC26A7. The CAIX-associated increase of AE2 activity did not result from altered AE2 expression or cell surface processing. CAIX was coimmunoprecipitated with the coexpressed SLC4 polypeptides AE1, AE2, and AE3, but not with SLC26A7. GST pull-down assays with a series of domain-deleted forms of CAIX revealed that the catalytic domain of CAIX mediated interaction with AE2. AE2 and CAIX colocalized in human gastric mucosa, as indicated by coimmunofluorescence. This is the first example of a functional and physical interaction between a bicarbonate transporter and a transmembrane carbonic anhydrase. We conclude that CAIX can bind to some Cl/HCO3 exchangers to form a bicarbonate transport metabolon. SLC4; SLC26; bicarbonate transport metabolon  相似文献   

4.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

5.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

6.
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl fluxes. Neither Na+ nor Cl appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km 1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3 does not affect boron extrusion by Bor1p, indicating that HCO3 does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner (10). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain. boron; SLC4; YNL275w  相似文献   

7.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

8.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

9.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

10.
Competitive inhibition of the HCO3 transport site, atthe plasmalemma of Chara coraUina, by the CO2–3 ion isdemonstrated. This CO2–3 inhibition was used to demonstratethat HCO3 ions enter the cell by facilitated ‘diffusion’when the HCO3 transport system has been inactivated bytreatment with 10 mM K+. Use of CO2–3 as a HCO3analogue is limited, however, because of the necessity to employsolutions of high pH. Inhibition was not observed in the presenceof a range of organic and inorganic acid anions. These resultsdemonstrate the stereo-specific nature of the HCO3 bindingsite. A variety of amino compounds were found to inhibit H14CO3influx. Inhibition appeared to be competitive, being completelyrelieved at higher substrate (HCO3) concentrations. Asimple correlation was not found between the degree of inhibitionand the concentration of neutral base. A combination of thepresence of neutral base and experimental pH values of at least8·0 was required to produce the reactive species thatinhibited HCO3 transport. This species is consideredto be the amino carbamate. These results are discussed withrespect to further HCO3 analogue experiments.  相似文献   

11.
Anion channels provide a pathway for Cl influx into the lumen of the Golgi cisternae. This influx permits luminal acidification by the organelle's H+-ATPase. Three different experimental approaches, electrophysiological, biochemical, and proteomic, demonstrated that two Golgi anion channels, GOLAC-1 and GOLAC-2, also mediate ATP anion transport into the Golgi lumen. First, GOLAC-1 and -2 were incorporated into planar lipid bilayers, and single-channel recordings were obtained. Low ionic activities of K2ATP added to the cis-chamber directly inhibited the Cl subconductance levels of both channels, with Km values ranging from 16 to 115 µM. Substitution of either K2ATP or MgATP for Cl on the cis, trans, or both sides indicated that ATP is conducted by the channels with a relative permeability sequence of Cl > ATP4– > MgATP2–. Single-channel currents were observed at physiological concentrations of Cl and ATP, providing evidence for their importance in vivo. Second, transport of [-32P]ATP into sealed Golgi vesicles that maintain in situ orientation was consistent with movement through the GOLACs because it exhibited little temperature dependence and was saturated with an apparent Km = 25 µM. Finally, after transport of [-32P]ATP, a protease-protection assay demonstrated that proteins are phosphorylated within the Golgi lumen, and after SDS-PAGE, the proteins in the phosphorylated bands were identified by mass spectrometry. GOLAC conductances, [-32P]ATP transport, and protein phosphorylation have identical pharmacological profiles. We conclude that the GOLACs play dual roles in the Golgi complex, providing pathways for Cl and ATP influx into the Golgi lumen. Golgi complex; Cl channel; mass spectrometry; phosphorylation  相似文献   

12.
Osman, M. E-A. H. and El-Shentenawy, F. 1988. Photosyntheticelectron transport under phosphorylating conditions as influencedby different concentrations of various salts.—J. exp.Bot. 39: 859–863. The rate of light-induced electron transport by isolated spinachthylakoids under phosphorylating conditions, as affected bydifferent concentrations of Br, Cl, NO3,HCO3, SO42– and CO32– has been investigated.The results show that both low and high concentrations of HCO32–stimulated the oxygen evolution capacity under phosphorylatingconditions, whereas only low concentrations of CO32–,SO42– and Cl stimulated the oxygen evolution capacity.However, irrespective of concentration, both Br and NO3reduced this capacity. The rate of photosynthetic electron transportwas generally stimulated by addition of ADP, even in cases whereelectron transport was inhibited by addition of bromide andnitrate. The different concentrations of these anions also causedreduction of the power generated by proton pumping and usedfor phosphorylation. The greatest level of reduction was observedin the presence of high concentrations of Cl and HCO3. Key words: Spinach thylakoids, photosynthetic electron transport, phosphorylation  相似文献   

13.
The role of Cl in the reactivation of O2 evolution inphotosystem II (PS II) particles derived from spinach chloroplastswas studied in the presence of various salts. Multivalent ion(especially anion) salts were found to strongly suppress thereactivation of O2 evolution by Cl in the Cl-depletedPS II particles in a competitive manner. The effectiveness ofanions in the suppression of Cl-supported O2 evolutionwas in the order of trivalent>divalent>monovalent ones.Multivalent anions similarly suppressed O2 evolution in theuntreated PS II particles under low and moderate Cl concentrations.pH dependence of the Cl-affinity (Km) value for Cl)was also studied. Within the pH range 5.5 to 8 the Km valuebecame higher as the pH of the medium increased. These resultssuggest that the membrane surface in the vicinity of the Claction site is net positively charged and attracts Clelectrostatically, and that the site is almost freely accessibleto various anions. The origin and role of the local net positivedomain and the role of peripheral proteins are discussed. (Received May 27, 1985; Accepted October 8, 1985)  相似文献   

14.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

15.
Experiments were conducted to determine whether the Cl secretagogue, 1-ethyl-2-benzimidazolinone (EBIO), stimulates Cl transport in the rabbit conjunctival epithelium. For this study, epithelia were isolated in an Ussing-type chamber under short-circuit conditions. The effects of EBIO on the short-circuit current (Isc) and transepithelial resistance (Rt) were measured under physiological conditions, as well as in experiments with altered electrolyte concentrations. Addition of 0.5 mM EBIO to the apical bath stimulated the control Isc by 64% and reduced Rt by 21% (P < 0.05; paired data). Under Cl-free conditions, Isc stimulation using EBIO was markedly attenuated. In the presence of an apical-to-basolateral K+ gradient and permeabilization of the apical membrane, the majority of the Isc reflected the transcellular movement of K+ via basolateral K+ channels. Under these conditions, EBIO in combination with A23187 elicited nearly instantaneous 60–90% increases in Isc that were sensitive to the calmodulin antagonist calmidazolium and the K+ channel blocker tetraethyl ammonium. In the presence of an apical-to-basolateral Cl gradient and nystatin permeabilization of the basolateral aspect, EBIO increased the Cl-dependent Isc, an effect prevented by the channel blocker glibenclamide (0.3 mM). The latter compound also was used to determine the proportion of EBIO-evoked unidirectional 36Cl fluxes in the presence of the Cl gradient that traversed the epithelium transcellularly. Overall, EBIO activated apical Cl channels and basolateral K+ channels (presumably those that are Ca2+ dependent), thereby suggesting that this compound, or related derivatives, may be suitable as topical agents to stimulate fluid transport across the tissue in individuals with lacrimal gland deficiencies. Ussing chamber; short-circuit current; electrolyte transport; chloride secretagogue; potassium conductance; 1-ethyl-2-benzimidazolinone; 1,10-phenanthroline  相似文献   

16.
Human NBC3 is an electroneutral Na+/HCO3 cotransporter expressed in heart, skeletal muscle, and kidney in which it plays an important role in HCO3 metabolism. Cytosolic enzyme carbonic anhydrase II (CAII) catalyzes the reaction CO2 + H2O HCO3 + H+ in many tissues. We investigated whether NBC3, like some Cl/HCO3 exchange proteins, could bind CAII and whether PKA could regulate NBC3 activity through modulation of CAII binding. CAII bound the COOH-terminal domain of NBC3 (NBC3Ct) with Kd = 101 nM; the interaction was stronger at acid pH. Cotransfection of HEK-293 cells with NBC3 and CAII recruited CAII to the plasma membrane. Mutagenesis of consensus CAII binding sites revealed that the D1135-D1136 region of NBC3 is essential for CAII/NBC3 interaction and for optimal function, because the NBC3 D1135N/D1136N retained only 29 ± 22% of wild-type activity. Coexpression of the functionally dominant-negative CAII mutant V143Y with NBC3 or addition of 100 µM 8-bromoadenosine to NBC3 transfected cells reduced intracellular pH (pHi) recovery rate by 31 ± 3, or 38 ± 7%, respectively, relative to untreated NBC3 transfected cells. The effects were additive, together decreasing the pHi recovery rate by 69 ± 12%, suggesting that PKA reduces transport activity by a mechanism independently of CAII. Measurements of PKA-dependent phosphorylation by mass spectroscopy and labeling with [-32P]ATP showed that NBC3Ct was not a PKA substrate. These results demonstrate that NBC3 and CAII interact to maximize the HCO3 transport rate. Although PKA decreased NBC3 transport activity, it did so independently of the NBC3/CAII interaction and did not involve phosphorylation of NBC3Ct. pH regulation; bicarbonate transport; metabolon  相似文献   

17.
In cells of cyanobacterium Anabaena variabilis grown under ordinaryair (low-CO2 cells), the transport of both CO2 and HCO3was significantly enhanced by Na+. This effect was pronouncedas the external pH increased. When low-CO2 cells were treatedwith an inhibitor of carbonic anhydrase (CA), only CO2 transportbut not HCO3 transport, was inhibited. The initial rateof photosynthetic carbon fixation as a function of the concentrationof internal inorganic carbon (IC) was practically the same irrespectiveof whether CO2 or HCO3 was externally supplied. Theseresults suggest that IC is actively transported through theplasma membrane in a form of HCO3 probably by some transporterand that the transmembrane Na+ gradient is involved in thisIC transport system. Free CO2 may be hydrated by CA to HCO3and then transported to the cells by this transporter. On the other hand, CO2 is actively taken up by cells grown withair containing 5% CO2 (high-CO2 cells) though the enhancingeffect of Na+ was much smaller in high- CO2 cells than in low-CO2cells. The initial rate of fixation as a function of internal IC concentrationindicated that the rate of the carboxylation reaction of accumulatedIC is higher in I0W-CO2 cells than in high-CO2 cells. The studieswith ethoxyzolamide indicated that even in low-CO2 cells, CAdoes not function inside Anabaena cells. These results suggestthat inside the low-CO2 cells of Anabaena, some mediator(s)facilitates the transport of IC to RuBPCase. (Received January 23, 1987; Accepted April 24, 1987)  相似文献   

18.
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+ cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+ cycling include K+ channels, Na+-2Cl-K+ cotransporter, Na+/K+-ATPase, Cl channels, connexins, and K+/Cl cotransporters. Furthermore, endolymphatic Na+ and Ca2+ homeostasis depends on Ca2+-ATPase, Ca2+ channels, Na+ channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl/HCO3 exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+ channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl-K+ cotransporter (SLC12A2), K+/Cl cotransporters (KCC3 and KCC4), Cl channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+ secretion (KCNMA1), limited HCO3 elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs. cochlea; vestibular labyrinth; stria vascularis; deafness; renal tubule  相似文献   

19.
Hydrodictyon africanum can photosynthesize at high pH underconditions in which HCO3 rather than CO2 is the carbonspecies entering the cell. A passive entry of HCO3 seemsunlikely; a metabolic HCO3 pump is proposed. It is possiblethat such a pump is related to a light-dependent reaction specificto the use of HCO3. This reaction is dependent on photosystem2, but appears to be independent of ATP. These characteristicsare similar to those of active lightdependent Cl influx in H.africanum, and suggest a similar energy source for the two pumps.The HCO3 pump may be electrogenic.  相似文献   

20.
Chara cells show an inward positive electric current acrossthe plasmalemma when exposed to Cl under voltage-clampconditions. The rapid rise of this current suggests that itis directly associated with the inward transport of Cl.The dependence of the current on Cl concentration showssaturation, the data fitting the Michaelis-Menten equation withVm up to 100 nmol m–2 s–1 (for Clstarvedcells) with KM 10–20 µM, and with some allowancefor an unstirred layer of water adjacent to the membrane. Theeffects on the current of clamp potential, illumination, withdrawalof alkali metal cations, and addition of amine were also investigated.These results suggest that the mechanism is the symport of 2H+ with each Cl, and that the actions of light, externalK+, and amine in stimulating Cl, influx are indirect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号