首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS–MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.  相似文献   

2.
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.  相似文献   

3.
Very short patch repair: reducing the cost of cytosine methylation   总被引:11,自引:1,他引:10  
In Escherichia coli and related bacteria, the product of gene dcm methylates the second cytosine of 5'-CCWGG sequences (where W is A or T). Deamination of 5-methylcytosine (5meC) results in C to T mutations. The mutagenic potential of 5meC is reduced by a system called very short patch (VSP) repair, which replaces T with C. T:G and U:G mispairs in the methylatable sequence and in related sequences are recognized by the product of vsr , a gene adjacent to dcm . Vsr creates a nick just 5' of the mispaired pyrimidine to initiate the repair. Additional products known to be required for VSP repair are DNA polymerase I and DNA ligase. MutS and MutL have a stimulatory role but are not required. The ability of Vsr to recognize T:G mispairs in sequences related to CCWGG is probably responsible for over- and under-representation of certain tetranucleotides in the E. coli genome. Although VSP repair reduces spontaneous mutations at 5meCs in replicating bacteria, mutation hot-spots persist at these sites. Under conditions that more accurately mimic the natural environment of E. coli , VSP repair appears to be effective in preventing mutation at 5meC.  相似文献   

4.
In Escherichia coli, T:G mismatches in specific contexts are corrected by a very short patch (VSP) repair system. Previous studies have shown that the product of gene vsr mediates correction of T:G to C:G in the 5'CTAGG/3'GGTCC context and in some related contexts. Amber mutations that arose in CAG sequences in gene cI of bacteriophage lambda were used to determine the effect of flanking bases on the repair of T:G mispairs arising during phage recombination. The experimental findings were combined with published data on mismatch repair of mutations in lambda gene P and E. coli gene lacI. While VSP repair was most efficient in the context 5'CTAGG, there was very significant correction when either the 5'C or the 3' G was replaced by another base. Some mismatch repair of TAG to CAG occurred in all contexts tested. Reduction in VSP repair caused by the lack of MutL or MutS was fully complemented by the addition of vsr+ plasmids when the T:G mispair was in the 5'CTAGG/3'GGTCC context. VSP repair was decreased in bacteria containing mutS+ on a multicopy plasmid. It is suggested that VSP repair maintains sequences such as the repetitive extragenic palindromic (REP) and Chi sequences, which have important roles in E. coli and closely related bacteria.  相似文献   

5.
Vsr mediates very short patch repair in Escherichia coli, correcting T/G mismatches caused by deamination of 5-methylcytosine to thymine. MutS and MutL, part of the post-replication mismatch repair system, stimulate VSP repair. In this study, we use a bacterial two-hybrid assay to show that MutL interacts with Vsr. We also show that interaction between Vsr and MutL inhibits the ability of MutL to dimerize, to interact with MutS and MutH and to mediate a previously unknown interaction between MutS and MutH. This inhibition may explain why high levels of Vsr are mutagenic in vivo. In addition, we show that the Mut fusion proteins are repair proficient in the bacterial two-hybrid assay, making it possible to study their interactions in various genetic backgrounds, or in the presence of DNA damaging agents.  相似文献   

6.
DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O(6)-methylguanine (O(6)mG), which stably pairs with thymine during replication and thereby creates a promutagenic O(6)mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O(6)mG:T mismatches can lead to cell death or result in G:C-->A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O(6)mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O(6)mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O(6)mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O(6)mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O(6)mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O(6)mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs.  相似文献   

7.
Vsr DNA mismatch endonuclease is the key enzyme of very short patch (VSP) DNA mismatch repair and nicks the T-containing strand at the site of a T-G mismatch in a sequence-dependent manner. MutS is part of the mutHLS repair system and binds to diverse mismatches in DNA. The function of the mutL gene product is currently unclear but mutations in the gene abolish mutHLS -dependent repair. The absence of MutL severely reduces VSP repair but does not abolish it. Purified MutL appears to act catalytically to bind Vsr to its substrate; one-hundredth of an equivalent of MutL is sufficient to bring about a significant effect. MutL enhances binding of MutS to its substrate 6-fold but does so in a stoichiometric manner. Mutational studies indicate that the MutL interaction region lies within the N-terminal 330 amino acids and that the MutL multimerization region is at the C-terminal end. MutL mutant monomeric forms can stimulate MutS binding.  相似文献   

8.
M Lieb 《Journal of bacteriology》1987,169(11):5241-5246
Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity.  相似文献   

9.
The activities of the Vsr and MutH endonucleases of Escherichia coli are stimulated by MutL. The interaction of MutL with each enzyme is enhanced in vivo by 2-aminopurine treatment and by inactivation of the mutY gene. We hypothesize that MutL recruits the endonucleases to sites of DNA damage.The Escherichia coli Dcm protein methylates the second C of CCWGG sites (W = A or T). Deamination of 5-methylcytosine converts CG base pairs to T/G mismatches, causing CCWGG-to-CTWGG transition mutations. Very-short-patch (VSP) repair minimizes these mutations (2). Repair is initiated by a sequence- and mismatch-specific endonuclease, Vsr, which cleaves the DNA 5′ of the T. DNA polymerase I removes the T along with a few 3′ nucleotides and resynthesizes the missing bases, restoring the CG base pair. Vsr is both necessary and sufficient for initiating VSP repair. However, two other proteins, MutS and MutL, enhance VSP repair of deamination damage (1).MutS and MutL are best known for their roles in postreplication mismatch repair (MMR) (9, 11). MutL couples mismatch recognition by MutS to the activation of MutH, an endonuclease that cleaves the unmethylated strand of GATC sequences that are transiently hemimethylated following DNA replication. The nicked strand, containing the erroneous base, is removed by the UvrD helicase and one of several exonucleases to beyond the mismatch and then resynthesized by DNA polymerase III.MutL stimulates the endonuclease activities of both Vsr and MutH in vitro (8, 17). The requirements for stimulation are the same: a mismatch, MutS, and ATP hydrolysis by MutL (8, 8a). Cross-linking studies showed that MutH and Vsr interact with the same region in the N-terminal domain of MutL (Heinze et al., submitted). Competition of Vsr with MutH for access to MutL explains the ability of Vsr to inactivate MMR in vivo when overexpressed (6, 13). Thus, the interactions of the two repair endonucleases with MutL are structurally and functionally very similar.In contrast to MMR, where the cleavage site for MutH may be several kilobases away from the mismatch, VSP repair requires that mismatch recognition and endonucleolytic cleavage occur at the same C(T/G)WGG site. How MutS and MutL stimulate VSP repair if MutS and Vsr compete for the same mismatch remains unknown (2, 12). We hypothesized that MutS binds the mismatch first and that a MutS-MutL complex then recruits Vsr. If so, then the MMR proteins would initially mask the mismatch, making the interaction of Vsr with MutL independent of lesion identity.To test this hypothesis, we studied the interaction of MutL with Vsr and with MutH in response to two types of mismatch by using a bacterial two-hybrid assay (10). This assay detects all known interactions among the Mut proteins: homodimerization of MutS and MutL, interaction of MutL with MutS and with MutH, and interaction of Vsr with the N-terminal domain of MutL (15). We found no false positives or false negatives. Furthermore, since the assay relies on reconstitution of a soluble protein (adenylate cyclase), the DNA repair proteins are free to interact with the DNA (Fig. (Fig.11).Open in a separate windowFIG. 1.Known interactions among repair proteins as detected by the bacterial two-hybrid assay. The T18 and T25 subunits of CyaA are fused to any two repair proteins (illustrated here by MutL and Vsr), allowing measurement of all pairwise interactions as units of β-galactosidase (β-gal). T25 fusions are repair proficient. CRP, cyclic AMP (cAMP) receptor protein; P, lac operon promoter; RNAP, RNA polymerase.2-Aminopurine (2AP) mispairs with C during DNA replication, causing transition and frameshift mutations (5). The transitions are due primarily to the mismatch itself; the frameshifts are due to saturation of MMR, which leaves slipped-strand intermediates caused by DNA replication errors unrepaired (19). MutS and MutL bind to 2AP/C lesions (22), although the lesions may not be subject to MMR (19). As shown in Fig. Fig.2,2, treatment with 2AP causes a dose-dependent increase in the interaction of MutL with both Vsr and MutH; dimerization of MutL and interaction of MutL with MutS are somewhat increased.Open in a separate windowFIG. 2.Effect of 2AP treatment on protein-protein interactions in the bacterial two-hybrid assay. Results in units of β-galactosidase ± standard errors of the means (n = 9) are shown for BTH101(F galE15 ga1K16 rpsL1 hsdR2 mcrA1 mcrB1 cyaA-99) cells treated with 2AP as described previously (5, 19). Cells were cotransformed with pT18 and pT25 vectors (light gray bars), pT18-mutS and pT25-mutL (white bars), pT18-vsr and pT25-mutL (gray bars), pT18-mutH and pT25-mutL (black bars), or pT18-mutL and pT25-mutL (mottled bars). (NB: The dose-response curve for the pT18-mutS pT25-mutS transformants is similar to that of the pT18-mutL pT25-mutL transformants; it has been omitted for graphical clarity since the MutS-MutS interaction gives very high units of β-galactosidase activity [15]).The MutY adenine glycosylase removes A''s which have mispaired with oxidized guanine (8-oxoG) during DNA replication. Cells with a deletion of mutY have an elevated frequency of CG-to-AT transversion mutations (18); these are reduced by excess MutS, suggesting that 8-oxoG/A mismatches are also subject to MMR (23). As shown in Fig. Fig.3,3, the interactions between Vsr and MutL and between MutH and MutL increase in a mutY cell (stippled bars). Other interactions, such as MutS dimerization, are unaffected (not shown).Open in a separate windowFIG. 3.Effects of mutY and mutT deletions on protein-protein interactions in the bacterial two-hybrid assay. Results are in units of β-galactosidase, relative to the level in the wild type, in mutT (solid) and mutY (stippled) derivatives of BTH101 cotransformed with pT18 and pT25 vectors, pT18-mutH and pT25-mutL, pT18-vsr and pT25-mutL, or pT18-mutS and pT25-mutS (n = 3).8-OxoG/A mismatches also arise by incorporation of oxidized dGTP opposite A during DNA replication. The MutT nuclease minimizes this by removing oxidized dGTP from the nucleotide pool. The high frequency of AT-to-CG mutations in mutT strains is unaffected by the status of the MMR system (7, 21, 23), possibly because these 8-oxoG/A mispairs are in a conformation that MutS does not recognize. As shown in Fig. Fig.3,3, neither the interaction between MutL and Vsr nor that between MutL and MutH is elevated in a mutT strain (solid bars).These data show that mismatches which attract MutS and MutL increase the interaction of MutL with MutH in vivo. Although these mismatches are not subject to VSP repair, they also increase the interaction between MutL and Vsr. The simplest interpretation is that a MutS-MutL complex recruits MutH and Vsr to the DNA independent of the identity of the mismatch. MutS and MutL could then clear the mismatch, delivering the (activated) endonuclease to its specific target site, no matter how far away it is.Interaction of MutL with MutH, leading to MMR, is probably the default option. However, the MutS-MutL complex may recruit other repair proteins, such as Vsr or UvrB (20), to lesions that are poorly processed by MMR. The T/G mismatch in hemimethylated CTWGG sequences may be one such site. Vsr is expressed at very low levels in growing cells (14), so this recruitment would enhance VSP repair. However, recruitment of Vsr to other lesions would reduce VSP repair. For example, recruitment of Vsr by MutL to 2AP/C lesions (Fig. (Fig.2)2) could explain why CCWGG sites are hotspots for 2AP-induced mutations (4, 19).We have argued that Vsr is kept at low levels while DNA is replicating to avoid interference with MMR (14). However, if, as we suggest here, MutS and MutL are needed to recruit scarce Vsr to its target sequence, this argument loses its merit. It seems more likely that Vsr levels are kept low to avoid CTWGG-to-CCWGG mutations; Vsr creates these mutations by converting T/G mismatches formed at CTAGG sites by errors in DNA replication to CG (3, 6, 16). Vsr levels rise in nongrowing cells (14), when mutagenesis is no longer a risk. Under these circumstances, it is likely that MutS and MutL are no longer required for efficient VSP repair.  相似文献   

10.
The Escherichia coli very short patch (VSP) repair pathway corrects thymidine-guanine mismatches that result from spontaneous hydrolytic deamination damage of 5-methyl cytosine. The VSP repair pathway requires the Vsr endonuclease, DNA polymerase I, a DNA ligase, MutS, and MutL to function at peak efficiency. The biochemical roles of most of these proteins in the VSP repair pathway have been studied extensively. However, these proteins have not been studied together in the context of VSP repair in an in vitro system. Using purified components of the VSP repair system in a reconstitution reaction, we have begun to develop an understanding of the role played by each of these proteins in the VSP repair pathway and have gained insights into their interactions. In this report we demonstrate an in vitro reconstitution of the VSP repair pathway using a plasmid DNA substrate. Surprisingly, the repair track length can be modulated by the concentration of DNA ligase. We propose roles for MutL and MutS in coordination of this repair pathway.  相似文献   

11.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

12.
Yang H  Yung M  Sikavi C  Miller JH 《DNA Repair》2011,10(11):1121-1130
DNA mismatch repair (MMR) systems can be classified as either MutH-dependent or MutH-independent. In bacteria, extensive studies have been conducted with the MutH-dependent MMR in Escherichia coli and its close relatives. The picture of MutH-independent MMR in other bacteria is less clear, as MMR components other than MutS and MutL have not been identified in the majority of bacteria. Bacillus anthracis is one of the MutH-less Gram(+) bacteria in the phylum of Firmicutes. We used papillation as a tool to search for B. anthracis new mutator strains and identified a spontaneous mutator that carries a minitransposon insertion in the BAS4289 locus. The mutational frequency and specificity exhibited in this mutant were comparable to that of MMR-deficient strains with knockouts of mutL or mutS. It retained a similar UV sensitivity profile as that of the wild type. BAS4289 encodes a putative DNA helicase RecD2 that shares 30% sequence identity with Deinococcus radiodurans RecD2, a well characterized superfamily 1B helicase whose homologs are widely present in Firmicutes complete genomes. We demonstrated that the N-terminal region of RecD2, a unique sequence extension used to distinguish RecD2 from RecD1, was important for B. anthracis RecD2, as mutations in the N-terminal conserved motifs affected its DNA repair function. This is the first report of a RecD2 helicase being associated with MMR. RecD2 and our recently described YycJ protein are likely to be two additional components in the B. anthracis MutH-independent MMR system.  相似文献   

13.
Summary It has been established that very short patch (VSP) mismatch repair, depending inEscherichia coli on MutL, MutS and Dcm functions, is responsible for the hyper-recombinogenic effect of a class of genetic markers. We show that VSP repair requires the presence of the complete DNA polymerase I enzyme. The absence of endonuclease activities involved in the repair of base-loss sites, Nth, Nfo and Xth, does not affect VSP repair. Implications for the mechanism of the VSP repair are discussed.  相似文献   

14.
A Sohail  M Lieb  M Dar    A S Bhagwat 《Journal of bacteriology》1990,172(8):4214-4221
Deamination of 5-methylcytosine in DNA results in T/G mismatches. If unrepaired, these mismatches can lead to C-to-T transition mutations. The very short patch (VSP) repair process in Escherichia coli counteracts the mutagenic process by repairing the mismatches in favor of the G-containing strand. Previously we have shown that a plasmid containing an 11-kilobase fragment from the E. coli chromosome can complement a chromosomal mutation defective in both cytosine methylation and VSP repair. We have now mapped the regions essential for the two phenotypes. In the process, we have constructed plasmids that complement the chromosomal mutation for methylation, but not for repair, and vice versa. The genes responsible for these phenotypes have been identified by DNA sequence analysis. The gene essential for cytosine methylation, dcm, is predicted to code for a 473-amino-acid protein and is not required for VSP repair. It is similar to other DNA cytosine methylases and shares extensive sequence similarity with its isoschizomer, EcoRII methylase. The segment of DNA essential for VSP repair contains a gene that should code for a 156-amino-acid protein. This gene, named vsr, is not essential for DNA methylation. Remarkably, the 5' end of this gene appears to overlap the 3' end of dcm. The two genes appear to be transcribed from a common promoter but are in different translational registers. This gene arrangement may assure that Vsr is produced along with Dcm and may minimize the mutagenic effects of cytosine methylation.  相似文献   

15.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

16.
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.  相似文献   

17.
We have used direct selections to generate large numbers of mutants of Escherichia coli defective in the mismatch repair system and have screened these to identify mutants with temperature-sensitive defects. We detected and sequenced mutations that give rise to temperature-sensitive MutS, MutL, and MutH proteins. One mutation, mutS60, results in almost normal levels of spontaneous mutations at 37 degrees C but above this temperature gives rise to higher and higher levels of mutations, reaching the level of null mutations in mutS at 43 degrees C. However, at 37 degrees C the MutS60 protein can be much more easily titrated by mispairs than the wild-type MutS, as evidenced by the impaired ability to block homologous recombination in interspecies crosses and the increased levels of mutations from weak mutator alleles of mutD (dnaQ), mutC, and ndk. Strains with mutS60 can detect mispairs generated during replication that lead to mutation with much greater sensitivity than wild-type strains. The findings with ndk, lacking nucleotide diphosphate kinase, are striking. An ndk mutS60 strain yields four to five times the level of mutations seen in a full knockout of mutS. These results pose the question of whether similar altered Msh2 proteins result from presumed polymorphisms detected in tumor lines. The role of allele interactions in human disease susceptibility is discussed.  相似文献   

18.
Miguel V  Monti MR  Argaraña CE 《DNA Repair》2008,7(11):1799-1808
The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.  相似文献   

19.
M. Lieb 《Genetics》1991,128(1):23-27
In many strains of Escherichia coli, the product of gene dcm methylates the internal cytosines in the sequence 5'CC(A or T)GG. Spontaneous deamination of 5-methylcytosine produces thymine which, if not corrected, can result in a transition mutation. 5-Methylcytosines in the lacI gene are hotspots for spontaneous C to T mutations. dcm is linked to vsr, a gene required for very short patch (VSP) repair. VSP repair corrects T.G mispairs in the following contexts:CTAAGGGGTCC, CTTGGGGACC, TAGGGTCC and CTAGGGTC. I have investigated the relationships between cytosine methylation, mutation, and VSP repair. Spontaneous mutations in the repressor (cI) gene of lambda prophage were isolated in wild-type and mutant lysogens. A hotspot for spontaneous mutation that corresponds with a 5-methylcytosine was observed in wild-type lysogens but was not present in bacteria lacking both methylase and VSP repair activity. Introduction of a plasmid containing dcm+ and vsr+ restored the mutation hotspot. If the added plasmid carried only dcm+, the frequency of spontaneous mutations at the 5-methylcytosine was over 10-fold higher than in Dcm+Vsr+ lysogens. The addition of vsr on a plasmid to a wild-type lysogen resulted in a 4-fold reduction in mutation at the hotspot. These findings support the previously untested hypothesis that VSP repair prevents mutations resulting from deamination of 5-methylcytosine.  相似文献   

20.
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.Subject terms: Molecular biology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号