首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gu  Hanqing  Lian  Bi  Yuan  Yuxiang  Kong  Ci  Li  Yan  Liu  Chang  Qi  Yijun 《中国科学:生命科学英文版》2022,65(1):1-15
Science China Life Sciences - Apart from their primordial role in protein synthesis, tRNAs can be cleaved to produce tRNA-derived small RNAs (tsRNAs). The biological functions of tsRNAs in plants...  相似文献   

2.
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.Subject terms: Oncogenes, Non-coding RNAs  相似文献   

3.
4.
近年来,转运RNA(transfer RNA,tRNA)衍生的小RNA(tRNA-derived small RNA,tsRNAs)被认为是一种新的、潜在的非编码RNAs(non-coding RNA,ncRNAs)。根据在前体或成熟tRNA上切割位置的不同,tsRNAs主要被分为两种类型,即tRNA halves(tRNA-derived stress-induced RNA,tiRNAs)和tRNA衍生片段(tRNA-derived fragment,tRFs)。越来越多的证据表明,tsRNAs参与翻译起始抑制、基因沉默和调节核糖体发生等多种细胞代谢过程,并在癌症、神经退行性疾病、代谢性疾病和病毒感染等相关疾病的发生、发展中都起着重要的作用。综述tsRNAs生物学功能和作用机制及其在相关疾病中的潜在应用,总结tsRNAs研究目前存在的问题和未来的研究方向。  相似文献   

5.
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR−/−) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR−/− mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR−/− mice, warrant further investigations.  相似文献   

6.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.  相似文献   

7.
tRNA-derived small RNAs(tsRNA)是近年来发现的、存在于多种生物体内的一类非编码小RNA,来源于成熟tRNA或tRNA前体,其表达和修饰具有组织和细胞特异性. tsRNA参与应激反应、蛋白质翻译调控、核糖体生物合成、肿瘤发生、细胞增殖与凋亡、表观遗传信息的跨代传递等多种生理和病理过程. 本文主要对tsRNA的生成及分类、已知的生物学功能及作用机理、tsRNA 及其修饰在疾病中的作用等进行了综述.  相似文献   

8.
tRNA-derived small RNAs (tRFs), a kind of noncoding RNAs, are generated from transfer RNAs. tRFs have some types according to their source and sizes. They play important roles in cell life and carcinogenesis. In this paper, we review the biogenesis and biological properties. We also focus on current progress of tRFs and some tsRNAs such as tRF-Leu-CAG, which have been studied or will be further investigated in tumorgenesis and diagnostic biomarkers in the clinic.  相似文献   

9.
10.
11.
Knowledge regarding the relationship between the molecular mechanisms underlying atherosclerosis (AS) and transfer RNA-derived small RNAs (tsRNAs) is limited. This study illustrated the expression profile of tsRNAs, thus exploring its roles in AS pathogenesis. Small RNA sequencing was performed with four atherosclerotic arterial and four healthy subject samples. Using bioinformatics, the protein-protein interaction network and cellular experiments were constructed to predict the enriched signalling pathways and regulatory roles of tsRNAs in AS. Of the total 315 tsRNAs identified to be dysregulated in the AS group, 131 and 184 were up-regulated and down-regulated, respectively. Interestingly, the pathway of the differentiated expression of tsRNAs in cell adhesion molecules (CAMs) was implicated to be closely associated with AS. Particularly, tRF-Gly-GCC might participate in AS pathogenesis via regulating cell adhesion, proliferation, migration and phenotypic transformation in HUVECs and VSMCs. In conclusion, tsRNAs might help understand the molecular mechanisms of AS better. tRF-Gly-GCC may be a promising target for suppressing abnormal vessels functions, suggesting a novel strategy for preventing the progression of atherosclerosis.  相似文献   

12.
tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.  相似文献   

13.
《Genomics》2022,114(4):110392
tRNA-derived small RNAs (tsRNAs) participate in several biological processes, including carcinogenesis. The correlations between tsRNAs and human cancers are attracting substantial attention. Nevertheless, the involvement of tsRNAs in laryngeal squamous cell carcinoma (LSCC) progression remains unclear. We constructed tsRNAs expression profiles in LSCC and adjacent normal tissues by next-generation sequencing. Interestingly, we identified a specific 5′-tiRNA fragment (tRF-33-Q1Q89P9L842205) that was significantly downregulated and was closely associated with lymph node metastasis and advanced stages of LSCC. Importantly, we found that tRF-33-Q1Q89P9L842205 suppressed cell growth, proliferation, migration, invasion and induced apoptosis in LSCC by directly silencing phosphoinositide 3-kinase catalytic subunit (PIK3CD). We speculated that tRF-33-Q1Q89P9L842205 is a potential diagnostic biomarker for LSCC and acts as a tumor suppressor by directly targeting PIK3CD.  相似文献   

14.
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5′ tiRNAs into the same category: 5′-tRFs and review the biological functions and regulatory mechanisms of 5′-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.  相似文献   

15.
16.
Endogenous transfer RNA-derived small RNAs (tsRNAs) are newly identified RNAs that are closely associated with the pathogenesis of multiple diseases, but the involvement of tsRNAs in regulating acute pancreatitis (AP) development has not been reported. In this study, we screened out a novel tsRNA, tRF3-Thr-AGT, that was aberrantly downregulated in the acinar cell line AR42J treated with sodium taurocholate (STC) and the pancreatic tissues of STC-induced AP rat models. In addition, STC treatment suppressed cell viability, induced pyroptotic cell death and cellular inflammation in AP models in vitro and in vivo. Overexpression of tRF3-Thr-AGT partially reversed STC-induced detrimental effects on the AR42J cells. Next, Z-DNA-binding protein 1 (ZBP1) was identified as the downstream target of tRF3-Thr-AGT. Interestingly, upregulation of tRF3-Thr-AGT suppressed NOD-like receptor protein 3 (NLRP3)-mediated pyroptotic cell death in STC-treated AR42J cells via degrading ZBP1. Moreover, the effects of tRF3-Thr-AGT overexpression on cell viability and inflammation in AR42J cells were abrogated by upregulating ZBP1 and NLRP3. Collectively, our data indicated that tRF3-Thr-AGT suppressed ZBP1 expressions to restrain NLRP3-mediated pyroptotic cell death and inflammation in AP models. This study, for the first time, identified the role and potential underlying mechanisms by which tRF3-Thr-AGT regulated AP pathogenesis.  相似文献   

17.
High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users’ input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.  相似文献   

18.
Radiotherapy serves as a crucial strategy in the treatment of colorectal cancer (CRC). However, its efficacy is often hindered by the challenge of radiation resistance. Although the literature suggests that some tRNA-derived small RNAs (tsRNAs) are associated with various cancers, studies reporting the relationship of tsRNAs with cancer cell radiosensitivity have not been published yet. In our study, we utilized tsRNAs sequencing to predict differentially expressed tsRNAs in two CRC cells and their radioresistant cells, and 10 tsRNAs with significant differences in expression were validated by qPCR. The target genes of tRF-16-7X9PN5D were predicted and verified by the bioinformatics, dual-luciferase reporter gene assay and western blotting analyses. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16-7X9PN5D on cell function and radiosensitivity. Western blotting evaluated the relationship between tRF-16-7X9PN5D and the MKNK-eIF4E axis. Our findings demonstrated that tRF-16-7X9PN5D expression was substantially downregulated in radioresistant CRC cells. Furthermore, tRF-16-7X9PN5D could promote CRC cells' ability to proliferate, migrate, invade and obtain radiation resistance by targeting MKNK1. Finally, tRF-16-7X9PN5D could regulate eIF4E phosphorylation via MKNK1. This investigation indicated that tRF-16-7X9PN5D has an essential regulatory role in the radiation resistance of CRC by directly targeting MKNK1, and may be a new pathway for regulating the CRC radiosensitivity.  相似文献   

19.
Parental age at first pregnancy is increasing worldwide. The offspring of aged father has been associated with higher risk of several neuropsychiatric disorders, such as schizophrenia and autism, but the underlying mechanism remains elusive. Here we report that advanced paternal age in mice alters the profile of transfer RNA‐derived small RNAs (tsRNAs). Injection of sperm tsRNAs from aged male mice into zygotes induced anxiety‐like behaviors in F1 males. RNA sequencing of the cerebral cortex and hippocampus of those F1 male mice altered the gene expression of dopaminergic synapse and neurotrophin. tsRNAs from aged male mice injection also altered the neuropsychiatry‐related gene expression in two‐cell and blastocyst stage embryos. More importantly, the sperm tsRNA profile changes significantly during aging in human. The up‐regulated sperm tsRNA target genes were involved in neurogenesis and nervous system development. These results suggest that aging‐related changes of sperm tsRNA may contribute to the intergenerational transmission of behavioral traits.  相似文献   

20.
哺乳动物胚胎发育受遗传和表观遗传的共同调控.精子作为重要的雄性生殖细胞,通过受精过程,将这些信息传递给卵子,进而影响子代的发育.精子中携带有丰富的表观遗传信息,其中小非编码RNAs(small noncoding RNAs,sncRNAs)在精子发育不同阶段发挥重要的作用,包括调控基因表达、介导蛋白质翻译,以及参与精子...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号