首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanization is one of the most rapidly expanding forms of habitat alteration worldwide. Wildlife differs in their responses to urbanization depending upon species and site-specific factors. We used capture-mark-recapture to examine the abundance, population demographics, growth, and movements of the eastern long-necked turtle (Chelodina longicollis) in Australia over 1 year in a suburban environment and an adjacent nature reserve during drought. Contrary to expectations, sex ratios, injury incidence, and frequency of juvenile size classes did not differ between turtles in the suburbs and the nature reserve. Moreover, turtles in the suburbs were nearly 3 times more abundant, grew 5 times faster, and had populations comprised of more adults in the larger size classes than nature reserve populations. These findings, together with net movements from the nature reserves into the suburbs, suggest that suburban water bodies were the higher quality habitat, effectively buffering turtles from temporal fluctuations in environmental conditions during drought. However, reserve managers and urban planners need to recognize that suburban water bodies have the potential to attract turtles from nearby reserves during drought, and that even low levels of persistent mortality during these travels across reserve boundaries may have consequences for populations of long-lived vertebrates. © 2011 The Wildlife Society.  相似文献   

2.
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra‐annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.  相似文献   

3.
Fungal community responses to precipitation   总被引:2,自引:0,他引:2  
Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long‐term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain‐addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer‐term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change.  相似文献   

4.
Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long‐term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present‐day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural‐forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.  相似文献   

5.
Tree species occupy different hydrological niches and climate warming may affect tree performance in those niches through increased drought stress. However, the effects of climate warming on growth, carbon and water fluxes would differ depending on species’ hydrological niche. Species from wet sites should show a lower growth dependence on precipitation and also lower intrinsic water-use efficiency (WUEi), as compared with species from dry sites which should improve more the WUEi. We test these ideas by comparing radial-growth rates (basal-area increment), climate- and drought-growth associations and WUEi of hackberry (Celtis australis) vs. Aleppo pine (Pinus halepensis) and maritime pine (Pinus pinaster) in two Mediterranean sites located in Spain. Species are subjected to similar regional climate conditions in each site but occupy contrasting local hydrological niches (hackberry in wet sites and pines in dry sites). Climate is warming in both study sites and drought-avoiding pines are responding by showing higher growth rates and improved WUEi. We also found a similar growth dependency on winter-spring precipitation and summer drought of all species and sites and comparable WUEi values and trends, excepting in hackberry from southern Spain which grew more, and showed a higher growth resistance to drought and lower and more stable WUEi values. Variables inferred from tree rings as growth rates and WUEi allow characterizing the hydrological niche of tree species, which may be contingent on site conditions and climate warming.  相似文献   

6.
7.
Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate‐driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal regulation and xylem architecture: isohydric, diffuse porous and anisohydric, ring porous. We hypothesized that within the same climatic regime: (i) species‐specific differences in growth will be conditional on topographically mediated soil moisture availability; (ii) in extreme drought years, functional groups will have markedly different growth responses; and (iii) multiple hydroclimate variables will have direct and indirect effects on growth for each functional group. We used standardized tree‐ring chronologies to examine growth of diffuse‐porous (Acer, Liriodendron, and Betula) and ring‐porous (Quercus) species vs. on‐site climatic data from 1935 to 2003. Quercus species growing on upslope sites had higher basal area increment (BAI) than Quercus species growing on mesic, cove sites; whereas, Acer and Liriodendron had lower BAI on upslope compared to cove sites. Diffuse‐porous species were more sensitive to climate than ring porous, especially during extreme drought years. Across functional groups, radial growth was more sensitive to precipitation distribution, such as small storms and dry spell length (DSL), rather than the total amount of precipitation. Based on structural equation modeling, diffuse‐porous species on upslope sites were the most sensitive to multiple hydroclimate variables (r2 = 0.46), while ring‐porous species on upslope sites were the least sensitive (r2 = 0.32). Spring precipitation, vapor pressure deficit, and summer storms had direct effects on summer AET/P, and summer AET/P, growing season small storms and DSL partially explained growth. Decreasing numbers of small storms and extending the days between rainfall events will result in significant growth reduction, even in regions with relatively high total annual rainfall.  相似文献   

8.
Climate change and urbanization are among the most serious threats to amphibians, although little is known about their combined effects. We used a predictive spatial habitat suitability model to explore the potential impacts of climate change and urban development on the spotted marsh frog (Limnodynastes tasmaniensis) on the urban‐fringe of Melbourne, Australia. The CSIRO climate‐change predictions for the region indicate likely temperature increases of 3°C, and annual rainfall reductions of around 200 mm by the year 2070. Much of the study area overlaps a region that has been identified as one of the city's growth corridors. We used Bayesian logistic regression modelling to estimate current and future habitat suitability of pond sites in the Merri Creek catchment, exploring a range of best‐ to worst‐case scenarios through the use of hydrological and urbanization models. Our predictions for 2070, even under a moderate climate‐change scenario, suggest that the majority of ponds in the study area will be dry throughout much of the year. This has obvious implications for L. tasmaniensis, which is an aquatic breeding species. However, in the short term, urbanization is likely to have a more significant effect on the distribution of L. tasmaniensis in the Merri Creek catchment, particularly if development moves beyond the current urban growth boundary. The combined effects of climate change and urbanization could have a profound impact on the species, potentially causing it to disappear from within the study area. We provide recommendations for including such predictive models in urban planning and restoration activities to prepare for future conservation challenges.  相似文献   

9.
As the influence of climate change on tropical forests becomes apparent, more studies are needed to understand how changes in climatic variables such as rainfall are likely to affect tree phenology. Using a twelve‐year dataset (2005–2016), we studied the impact of seasonal rainfall patterns on the fruiting phenology of 69 tree species in the rain forest of southeastern Madagascar. We found that average annual rainfall in this region has increased by >800 mm (23%) during this period relative to that recorded for the previous 40 years and was highly variable both within and between years. Higher monthly measures of fruiting richness and the intensity of fruiting in our sample community were associated with significantly higher levels of rainfall. We also found that less rainfall during the dry season, but not the wet season, was associated with a significant shift toward later timing of peak richness and peak intensity of fruiting in the subsequent 12 months; however, this pattern was driven primarily by an extreme drought event that occurred during the study period. Longer time scales of phenology data are needed to see whether this pattern is consistent. Madagascar is expected to experience more extremes in rainfall and drought with increasing climate change. Thus, the linkages between variable precipitation and the fruiting phenology of forest trees will have important consequences for understanding plant reproduction and the ability of Madagascar's wildlife to cope with a changing climate.  相似文献   

10.
The effects of topographic position on water regime in a semideciduous tropical forest on Barro Colorado Island in Panamá were assessed by measuring soil matric potential using the filter paper technique and by using measured soil water release characteristics to convert a long-term (20 years) gravimetric water content data-set to matric potential. These were also compared against predictions from a simple water balance model. Soil matric potentials on slope sites were significantly higher than on plateau sites throughout the measurement interval and slopes experienced a shorter duration of drought during the annual dry-season. Measured values of matric potential agreed with those predicted from converting the gravimetric measurements using water release characteristics. Annual duration of drought predicted by the simple water balance model agreed with values determined from the converted long term water content data-set and was able to predict the annual duration of drought on plateau sites. On slope sites, the water balance systematically and significantly overestimated the duration of drought obtained from the water content data-set, suggesting that slope sites were supplied with water from upslope. Predictions of annual drought duration from sites with higher annual rainfall than Barro Colorado Island (BCI), suggest that while plateau sites on BCI experience a water regime consistent with annual rainfall, slopes experience a water regime more similar to that of forests with much higher rainfall. We conclude that such large variations in water regime over small spatial scales may play a role in maintaining high species richness through providing opportunities for niche specialisation and by buffering slopes against possible climate change.  相似文献   

11.
Within the tropics, a marked gradient in rainfall between dry and wet forests correlates with a well documented turnover of plant species. While water availability along these gradients is an important determinant of species distributions, other abiotic and biotic factors correlate with rainfall and may also contribute to limit species distribution. One of these is soil fertility, which is often lower in the wetter forests. To test its possible role in species distribution along a rainfall gradient, we performed a screen‐house experiment where we measured the growth performance of seedlings of 23 species with contrasting distributions across the Isthmus of Panama. We grew seedlings in soils collected from the drier Pacific side and the wetter Atlantic side. Differences in soil fertility across the Isthmus were large enough to significantly influence the growth performance of the seedlings. However, we found no evidence of home‐soil advantage among species with contrasting distributions. Dry‐distribution species grew on average slower than wet‐distribution species suggesting a cost to drought adaptations. The response to soil differences correlated with the growth rate of the species, such that fast‐growing species responded more to changes in soil quality. We hypothesize that inherently slow growth rates of some dry‐distribution tropical species may be a more important factor limiting their colonization of wetter sites along the rainfall gradient.  相似文献   

12.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   

13.
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long‐term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (?66.5%) and Q. ilex (?17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005–2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra‐ and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long‐term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long‐term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species‐specific responses to drought, what may eventually lead to a partial community shift favoring the more drought‐resistant species. However, we also report a dampening of the treatment effect on the two drought‐sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation.  相似文献   

14.
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   

15.
The effects of drought on soil dynamics after fire are poorly known, particularly its long‐term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient‐poor soils in semi‐arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post‐fire drought and its legacy on soil microbial community structure and functionality in a CistusErica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long‐term average rainfall), moderate drought (percentile 8 historical rainfall, 5 months of drought per year), and severe drought (percentile 2, 7 months of drought). Soil nutrients and microbial community composition (ester‐linked fatty acid approach) and functionality (enzyme activities and C mineralization rate) were monitored during the first 4 years after fire under rainfall treatments, plus two additional ones without them (six post‐fire years). We found that the recovery of burned soils was lower under drought. Post‐fire drought increased nitrate in the short term and reduced available phosphorus, exchangeable potassium, soil organic matter, enzyme activities, and carbon mineralization rate. Moreover, drought decreased soil total microbial biomass and fungi, with bacteria becoming relatively more abundant. Two years after discontinuing the drought treatments, the drought legacy was significant for available phosphorus and enzyme activities. Although microbial biomass did not show any drought legacy effect, the proportion of fungi and bacteria (mainly gram‐positive) did, being lower and higher, respectively, in former drought‐treated plots. We show that drought has an important impact on soil processes, and that some of its effects persist for at least 2 years after the drought ended. Therefore, drought and its legacy effects can be important for modeling biogeochemical processes in burned soils under future climate change.  相似文献   

16.
17.
Nowadays, the biological monitoring through the growth rings has received increasing attention from ecologists and toxicologists. Structural analysis of these rings allows the incorporation of a time component in the study of plant responses to environmental variation. This allows also to evaluate long time series from the woody plants. In this paper, we assessed the dendrochronological characteristics of Ceiba speciosa growing in forest environment and under urbanization impact. Stem samples were obtained with Pressler probe into trees growing the campus of the Oswaldo Cruz Foundation, adjacent to one of the main urban thoroughfares of the city of Rio de Janeiro (Avenida Brasil), and at Tinguá Biological Reserve, an important remnant of Atlantic Forest. The samples were processed and analyzed following usual dendrochronological methods, with COFECHA and ARSTAN softwares. A negative exponential curve was used for standardization of the series. The residual chronologies were correlated with precipitation and temperature indexes obtained from NOAA weather database. Growth rings are distinct and annual, marked by bands of marginal parenchyma, thick-walled and radially flattened fibres in latewood and distended rays in earlywood. In both sites, the intercorrelation between the trees was above 0.40. Ages ranged from 11 to 41 years in the urban site and from 27 to 64 years in the forest site. In urban area, mean annual increment and cumulative average growth rates were 6 mm/year and 142.62 mm, respectively. At the forest site, these rates were 4 mm/year and 173.07 mm, respectively. The comparison between cumulative radial increment of the two sites revealed that trees of the urban site had higher increment rates beginning at the start of their development and consequently, they showed similar diameters despite lower ages. Correlation analysis between the chronologies and climatic factors revealed a positive association between growth and hot and rainy periods for both study sites. However, there is an immediate response of urban trees in relation to the rains and, a late response of forest trees to the same factor. The dry and hot climate, typical of urban environments, and the absence of natural water reserves in urban soil, may explain this more immediate response of urban tree growth to rainfall and temperature indexes. Our results revealed that Ceiba speciosa is a plastic and stress-tolerant species that is able to survive and adapt to polluted urban conditions. These features, along with its wide natural distribution and frequent planting for city landscaping, make this species an important biomarker for environmental monitoring studies.  相似文献   

18.
 Radial growth responses to drought were examined in the tree-ring records of six species growing within two locations of differing land-use history and soil moisture characteristics, and in overstory and understory canopy positions in northern Virginia. Tree species experienced differential ring-width reductions during or immediately following four severe drought periods occurring from 1930 to 1965 and were influenced by climatic variables including annual and summer temperatures, annual precipitation, and annual Palmer Drought Severity Index. Relative growth comparisons averaged across species before and after drought years indicated that understory trees on dry-mesic sites grew 11% faster after drought compared to pre-drought rates while mesic site trees in both canopy positions grew approximately 4% slower. Superposed epoch analysis indicated that Liriodendron tulipifera growing on mesic sites experienced greater ring-width reductions associated with drought than co-occurring, more drought-tolerant Quercus alba and Q. velutina. On dry-mesic sites, L. tulipifera also experienced greatly reduced growth as a result of drought but exhibited significant growth increases following individual drought events. Quercus alba was the only species that exhibited a consistent, significant ring-width decrease associated with all droughts on dry-mesic sites. In contrast, Pinus virginiana was least impacted by drought on dry-mesic sites but was much more impacted by drought on mesic sites, indicating a drought×site interaction for this species. Overstory Carya glabra and Q. alba experienced larger growth decreases during drought on dry-mesic versus mesic sites. Understory tree growth reductions did not differ between site types but were often significantly larger than overstory responses of the same species on mesic sites. Following drought, most trees exhibited growth reductions lasting 2–3 years, although several species experienced reductions lasting up to 6 years. The results of this study suggest that tree rings represent an important long-term proxy for leaf-level ecophysiological measurements of growth responses to drought periods. Received: 31 July 1996 / Accepted: 16 April 1997  相似文献   

19.
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range‐wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back‐cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long‐term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long‐term demographic decline and range contraction for a species of high‐conservation concern. Range‐wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal‐limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.  相似文献   

20.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号