首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Tropical rainforests play an important role in the storage and cycling of global terrestrial carbon. In the carbon cycle, net primary productivity of forests is linked to soil respiration through the production and decomposition of forest litter. Climate seasonality appears to influence the production of litter although there is considerable variability within and across forests that makes accurate estimates challenging. We explored the effects of climate seasonality on litterfall dynamics in a lowland humid rainforest over a 7‐year period from 2007 to 2013, including an El Niño/La Niña cycle in 2010/2011. Litterfall was sampled fortnightly in 24 traps of 0.50 m diameter within a 1‐ha forest plot. Total mean litterfall was 10.48 ± 1.32 (±SD, dry weight) Mg ha?1 year?1 and seasonal in distribution. The different components of litterfall were divided into LLeaf (63.5%), LWood (27.7%) and LFF[flowers & fruit] (8.8%), which all demonstrated seasonal dynamics. Peak falls in LLeaf and LWood were highly predictable, coinciding with maximum daily temperatures and 1 and 2 months prior to maximum monthly rainfall. The El Niño/La Niña cycle coincided with elevated local winter temperatures and peak falls of LLeaf and LWood. Importantly, we establish how sampling length and generalized additive models eliminate the requirement for extensive within‐site sampling when the intention is to describe dynamics in litterfall patterns. Further, a greater understanding of seasonal cycles in litterfall allows us to distinguish between endogenous controls and environmental factors, such as El Niño events, which may have significant impacts on biochemical cycles.  相似文献   

2.
    
In light of rapid environmental change, quantifying the contribution of regional‐ and local‐scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral–algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5–2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.  相似文献   

3.
    
Abstract In 2002, fire burnt areas of Mesophyll‐ and Notophyll Vine Forest in the Smithfield Conservation Park near Cairns, Australia. We assessed the ability of rainforest plant species to persist through fire via resprouting. Natural rates of mortality and resprouting in unburnt areas were assessed for all saplings (stems < 2 m) via 13, 2 × 50 m belt transects, and compared to estimates of mortality and resprouting in 26 transects in burnt areas. We also tested the resprouting ability per‐individual stem of each species against all other stems with which it co‐occurred. Totals of 1242 stems (138 species) were sampled in burnt transects and 503 stems (95 species) in unburnt transects (total number of unique species = 169). There was no difference in the number of stems existing prior to the fire in burnt and unburnt areas when expressed on a per‐sample area basis. Resprouting from basal shoots and root suckers was significantly greater in burnt than in unburnt areas, but rates of stem sprouting were not different. In burnt areas 72 species were tested for resprouting ability and most (65/72) resprouted at similar rates. All species analysed contained individuals that resprouted. The resprouting response of five species was significantly lower, and in two species was significantly higher. For these species especially, fire may act as a mechanism altering relative abundances. The fire coincided with an extreme El Niño event. Current predictions indicate El Niño conditions may become increasingly common, suggesting fire events within rainforest could become more frequent. Resprouting as a general phenomenon of rainforest species, and differential resprouting ability between species should therefore be an important consideration in assessing the potential path of vegetation change in rainforests after fire.  相似文献   

4.
    

Aim

Climate oscillations are known to influence the reproductive phenology of birds. Here, we quantify the effects of cyclic climatic variation, specifically El Niño Southern Oscillation (ENSO), on birds that breed opportunistically. We aim to show how inter‐decadal climate fluctuations influence opportunistic breeding. This knowledge is essential for tracking the phenological responses of birds to climate change.

Location

Temperate and arid Australia.

Methods

We assessed variation in egg‐laying (start, peak, conclusion, length) during the three phases of ENSO (El Niño, La Niña and Neutral) for 64 temperate and 15 arid region species using ~80,000 observations. Linear mixed‐effect models and analysis of variance were used to (1) determine if, on average within each region, egg‐laying dates differed significantly among species between Neutral‐El Niño and Neutral‐La Niña phases, and (2) assess how La Niña and El Niño episodes influence egg‐laying in birds which breed early in the year.

Results

During La Niña phases, which are characterized by mild/wet conditions, most bird species in the temperate and arid regions exhibited longer egg‐laying periods relative to Neutral phases. However, there was substantial variation across species. This effect was strongly seasonal; species breeding in spring experienced the greatest increases in egg‐laying periods during La Niña. Further, we found only small differences in peak egg‐laying dates during Neutral and La Niña in the arid region; suggesting that hot temperatures may constrain breeding regardless of rainfall. The effects of El Niño on breeding phenology were not consistent in the temperate and arid regions and may be confounded by highly mobile species opportunistically moving and breeding with localized rainfall during dry periods.

Main conclusions

In both arid and temperate regions, increased rainfall associated with La Niña phases positively influences avian breeding, and likely recruitment. However, dry El Niño phases may not have the dramatic impacts on breeding phenology that are commonly assumed.
  相似文献   

5.
    
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

6.
Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate‐growth relations of a pioneer tree, Mimosa acantholoba, occurring in tropical dry secondary forests in southern Mexico. The role of large‐scale climatic drivers in determining interannual growth variation was studied by correlating growth to sea surface temperature anomalies (SSTA) of the Atlantic and Pacific Oceans, including the El Niño‐Southern Oscillation (ENSO). Annual growth varied eightfold over 1970–2007, and was correlated with wet season rainfall (r=0.75). Temperature, cloud cover and solar variation did not affect growth, although these climate variables correlated with growth due to their relations with rainfall. Strong positive correlations between growth and SSTA occurred in the North tropical Atlantic during the first half of the year, and in the Pacific during the second half of the year. The Pacific influence corresponded closely to ENSO‐like influences with negative effects of high SSTA in the eastern Pacific Niño3.4 region on growth due to decreases in rainfall. During El Niño years growth was reduced by 37%. We estimated how growth would be affected by the predicted trend of decreasing rainfall in Central America towards the end of this century. Using rainfall predictions of two sets of climate models, we estimated that growth at the end of this century will be reduced by 12% under a medium (A1B) and 21% under a high (A2) emission scenario. These results suggest that climate change may have repercussions for the carbon sequestration capacity of tropical dry forests in the region.  相似文献   

7.
    
Here we describe changes in ranging behavior and other activities of vervet monkeys (Cercopithecus aethiops) after a wildfire eliminated grass cover in a large area near the study group's home range. Soon after the fire, the vervets ranged farther away from tall trees that provide refuge from mammalian predators, and moved into the burned area where they had never been observed to go before the fire occurred. Visibility at vervet eye‐level was 10 times farther in the burned area than in unburned areas. They traveled faster, and adult females spent more time feeding and less time scanning bipedally in the burned area than in the unburned area. The burned area's greater visibility may have lowered the animals' perceived risk of predation there, and may have provided them with an unusual opportunity to eat acacia ants. Am. J. Primatol. 71:252–260, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
    
We monitored survival of seedlings in 216 1‐m2 quadrats in lowland rain forest in tropical north Queensland between December 2001 and December 2002. During this time, the region experienced severe drought associated with an El Nińo Southern Oscillation event. The 2001 census recorded 124 species and 2912 individuals. In late November 2002 (2 wk prior to the second census), a low intensity fire passed through approximately half of the study site removing all evidence of seedlings from 110 plots. Only 482 (17%) individuals and 64 (52%) species recorded in 2001 survived the 12‐mo period. In 96 quadrats not affected by fire, mortality was high, but considerably variable between species. Six of the 20 most abundant species in 2001 experienced mortality rates higher than the community average and two of the most abundant species showed rates lower than average. Overall, conditions experienced during 2002 caused significant changes in the rank abundances of species between censuses. Mortality due to fire was less severe and mortality more uniform across species, resulting in significant concordance between pre and postfire rankings, once the effects of drought had been considered. Our results provide the first indication of how differences in survival after a perturbation predicted to become more frequent in future global climates may alter the size and species composition of the seedling bank in Australian tropical rain forests.  相似文献   

9.
Given the threatened status of many primate species, the impacts of global warming on primate reproduction and, consequently, population growth should be of concern. We examined relations between climatic variability and birth seasonality, offspring production, and infant sex ratios in two ateline primates, northern muriquis, and woolly monkeys. In both species, the annual birth season was delayed by dry conditions and El Niño years, and delayed birth seasons were linked to lower birth rates. Additionally, increased mean annual temperatures were associated with lower birth rates for northern muriquis. Offspring sex ratios varied with climatic conditions in both species, but in different ways: directly in woolly monkeys and indirectly in northern muriquis. Woolly monkeys displayed an increase in the proportion of males among offspring in association with El Niño events, whereas in northern muriquis, increases in the proportion of males among offspring were associated with delayed onset of the birth season, which itself was related, although weakly, to warm, dry conditions. These results illustrate that global warming, increased drought frequency, and changes in the frequency of El Niño events could limit primate reproductive output, threatening the persistence and recovery of ateline primate populations.  相似文献   

10.
    
Abstract Predator assemblages are complex systems in which asynchrony in the dynamics of resources and consumers, and the idiosyncratic perception of environmental conditions by the predators may obscure the detection of expected patterns. We disentangle the specific effects of these variables on the guild structure of a vertebrate predatory assemblage in a semiarid ecosystem of western South America. Over 16 years, this system faced dramatic fluctuations in prey availability associated with four El Niño events. After controlling for other sources of variation, we tested if increased resource availability is associated with higher niche overlaps, as expected from the lean/fat scenario. We determined the existence of two trophic guilds of predators (specialized mammal‐eaters and omnivorous species with emphasis on arthropods) and found that they responded to increased productivity both at the guild and whole assemblage levels. However, the population response of arthropod prey (almost simultaneous) and of different small mammal prey (delayed by 1 or 2 years) to productivity imposed a degree of asynchrony in prey availability and in the response of predators. This resulted in the between‐guilds exchange of predator species depending on mammal prey scarcity or abundance. As a consequence, the observed pattern was an apparent lack of response at the assemblage level. Despite differences in the perception of prey levels by predators, we conclude that each one of them responded accordingly to theoretical predictions following a simple rule: if prey resources are not limiting, predators behave opportunistically converging over the most abundant resources, thus increasing niche overlap; if prey shortages occur, predators specialize on those prey resources that they gather most efficiently, thus lowering niche overlap; if resources become even scarcer, all predators converge again upon the few prey resources still available, thus increasing overlap – out of necessity.  相似文献   

11.
    
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

12.
    
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   

13.
    
Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries‐long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.  相似文献   

14.
    
Abstract. 1. Insects are known to be influenced by global climate change, especially by drought and increased temperatures. 2. Although ants are widely regarded to be indicator or keystone species and ecosystem engineers, we do not know how ants may respond to global climate change. 3. This study reports the range contraction of an extremely abundant fungus‐gardening ant (Trachymyrmex septentrionalis) over a 3‐year period that coincided with the end of a record drought in southeastern North America. 4. Reduction in nest number appears to be the result of an increase in water‐table levels and decrease in soil aridity. 5. Therefore T. septentrionalis should be expected to increase its abundance and presumably its ecological impact during multiyear droughts.  相似文献   

15.
    
H. A. Lessios 《Molecular ecology》2012,21(22):5390-5392
Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep‐water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Species with larvae that cannot stay in the plankton for the time it takes to cross between the two sides have been evolving independently. That the eastern Pacific does not share species with the rest of the Pacific was obvious to naturalists two centuries ago (Darwin 1860). Yet, this rule has exceptions. A small minority of species are known to straddle the Eastern Pacific Barrier. One such exception is the scleractinian coral Porites lobata (Fig.  1 ). This species is spread widely throughout the Indo‐Pacific, where it is one of the major reef‐builders, but it is also encountered in the eastern Pacific. Are eastern and central Pacific populations of this coral connected by gene flow? In this issue of Molecular Ecology, Baums et al. (2012) use microsatellite data to answer this question. They show that P. lobata populations in the eastern Pacific are cut off from genetic influx from the rest of the Pacific. Populations within each of the two oceanic regions are genetically connected (though those in the Hawaiian islands are also isolated). Significantly, the population in the Clipperton Atoll, the westernmost island in the eastern Pacific, genetically groups with populations from the central Pacific, suggesting that crossing the Eastern Pacific Barrier by P. lobata propagules does occasionally occur.  相似文献   

16.
    
Detecting and predicting how populations respond to environmental variability are eminent challenges in conservation research and management. This is particularly true for wildlife populations at high latitudes, many of which demonstrate changes in population dynamics associated with global warming. The Falkland Islands (Southwest Atlantic) hold one of the largest Gentoo Penguin Pygoscelis papua populations in the world, representing c. 34% of the global population. The numbers of breeding Gentoo Penguins at the Falkland Islands have shown a high degree of inter‐annual variability since monitoring commenced in 1990. However, proximate causes of annual variability in breeding numbers have not been explored. Here we examine 21 years of Gentoo Penguin breeding surveys from the Falkland Islands and assess whether inter‐annual variability in the number of breeding pairs were correlated with proxies of environmental variability. There was a positive correlation between the number of breeding pairs and a broad‐scale climatic variation index, the Southern Oscillation Index (SOI). In turn, the SOI was significantly correlated with spring sea surface temperature anomalies, indicating a more immediate atmospherically forced response to El Niño Southern Oscillation variability in the Southwest Atlantic than previously reported. However, we also describe a non‐linear response to environmental variability that may highlight foraging plasticity and/or the complexity of regional ecosystem interactions that operate across a range of different scales.  相似文献   

17.
Increasing ocean temperatures due to global warming are predicted to have negative effects on coral reef fishes. El Niño events are associated with elevated water temperatures at large spatial (1000s of km) and temporal (annual) scales, providing environmental conditions that enable temperature effects on reef fishes to be tested directly. We compared remote sensing data of sea surface temperature (SST) anomalies, surface current flow and chlorophyll‐a (Chl‐a) concentration with monthly patterns in larval supply of coral reef fishes in nearshore waters around Rangiroa Atoll (French Polynesia) from January 1996 to March 2000. This time included an intense El Niño (April 1997–May 1998) event between two periods of La Niña (January–March 1996 and August 1998–March 2000) conditions. There was a strong relationship between the timing of the El Niño event, current flow, ocean productivity (as measured by Chl‐a) and larval supply. In the warm conditions of the event, there was an increase in the SST anomaly index up to 3.5 °C above mean values and a decrease in the strength of the westward surface current toward the reef. These conditions coincided with low concentrations of Chl‐a (mean: 0.06 mg m?3, SE ± 0.004) and a 51% decline in larval supply from mean values. Conversely, during strong La Niña conditions when SST anomalies were almost 2 °C below mean values and there was a strong westward surface current, Chl‐a concentration was 150% greater than mean values and larval supply was 249% greater. A lag in larval supply suggested that productivity maybe affecting both the production of larvae by adults and larval survival. Our results suggest that warming temperatures in the world's oceans will have negative effects on the reproduction of reef fishes and survival of their larvae within the plankton, ultimately impacting on the replenishment of benthic populations.  相似文献   

18.
    
Aim We tested whether a hybrid zone that has formed between an endemic and an invasive species of marine mussel has shifted poleward as expected under a general hypothesis of global warming or has responded instead to decadal climate oscillations. Location We sampled 15 locations on the coast of California, USA, that span the distributions of the two species of marine mussels and their hybrids. Methods Mussels were sampled in 2005–08 and analysed at three nuclear gene loci using methods identical to those used in a study a decade earlier in order to document the genetic architecture of this system. Change in the system was determined by comparing the frequency of species‐specific alleles and multi‐locus genotypes over the intervening decade. Climate variation over the same period was examined by comparing the Pacific Decadal Oscillation (PDO), El Niño/Southern Oscillation (ENSO), upwelling indices and sea surface temperature (SST) during and prior to the study period. Results Contrary to the general expectations of global warming we show that the highly invasive warm‐water mussel Mytilus galloprovincialis and the hybrid zone formed with the endemic species Mytilus trossulus has rapidly contracted southwards. Mytilus galloprovincialis declined in abundance over the northern third of its geographic range (c. 540 km) and has become rare or absent across the northern 200 km of the range it previously colonized during its initial invasion. The distribution of the native species M. trossulus has remained unchanged over the same time period. Main conclusions The large‐scale range shift in the warm‐water invasive species M. galloprovincialis and the hybrid zone it forms with M. trossulus has been exceptionally rapid and is in the opposite direction to that predicted by the global warming hypotheses. This shift, however, is consistent with decadal climate variation associated with the ENSO and the PDO. Since the biogeography of this system was first described in 1999, the PDO has shifted from a warm phase, dominated by frequent and large El Niño events, to a cold‐phase period, with minimal ENSO activity. Thus recent decadal climate variation can oppose global trends in average temperature and this study illustrates the need to integrate the effects of climate change across multiple time‐scales.  相似文献   

19.
The June 1991 eruption of Mt. Pinatubo in the Philippines produced one of the greatest volcanic aerosols in the last hundred years. The estimated net decrease of radiation may have peaked at 10% in the tropics. What was the impact of the Pinatubo aerosol on regional and global climate? Besides the expected net cooling of the average global surface temperature, correlation studies indicate that other types of climate anomalies may also be expected. These include the appearance of an El Niño event, decreased Indian monsoon rainfall, fewer tropical storms in the north Atlantic Ocean in 1991–1993, and normal to above normal winter rainfall in California in 1991/92, all of which were observed. A proposed physical mechanism for the almost-simultaneous occurrence of this constellation of climate anomalies is presented. The results of correlation studies between low-latitude volcanic aerosols and the El Niño/Southern Oscillation are presented in some detail as one example. The correlation between Indian monsoon rainfall and tropical storms in the north Atlantic Ocean is also shown and is updated for the most recent 5 years.  相似文献   

20.
    
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号