首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Can satellite time series be used to identify tree and grass green‐up dates in a semi‐arid savanna system, and are there predictable environmental cues for green‐up for each life form? Location: Acacia nigrescens /Combretum apiculatum savanna, Kruger National Park, South Africa (25° S, 31° E). Methods: Remotely‐sensed data from the MODIS sensor were used to provide a five year record of greenness (NDVI) between 2000 and 2005. The seasonal and inter‐annual patterns of leaf display of trees and grasses were described, using additional ecological information to separate the greening signal of each life form from the satellite time series. Linking this data to daily meteorological and soil moisture data allowed the cues responsible for leaf flush in trees and grasses to be identified and a predictive model of savanna leaf‐out was developed. This was tested on a 22‐year NDVI dataset from the Advanced Very High Resolution Radiometer. A day length cue for tree green‐up predicted 86% of the green‐ups with an accuracy better than one month. A soil moisture and day length cue for grass green‐up predicted 73% of the green‐ups with an accuracy better than a month, and 82% within 45 days. This accuracy could be improved if the temporal resolution of the satellite data was shortened from the current two weeks. Conclusions: The data show that at a landscape scale savanna trees have a less variable phenological cycle (within and between years) than grasses. Realistic biophysical models of savanna systems need to take this into account. Using climatic data to predict these dynamics is a feasible approach.  相似文献   

2.
Bush encroachment can have profound effects on the ability of savanna ecosystems to provide goods and services to society. It is therefore crucial to understand the key drivers of bush encroachment in savannas. In this study, we test whether decadal changes in mean annual rainfall significantly explain changes in the dominant patch size as well as the density of bush patches at six protected savanna sites located along a rainfall gradient in Zimbabwe. We first performed Maximal Overlap Discrete Wavelet transform within the intensity‐dominant scale theoretical framework on multi‐temporal aerial photographs and high spatial resolution satellite imagery to objectively detect changes in the dominant patch dimension as well as the intensity of bush cover over a 40‐year period at six test sites. We then pooled the data and performed regression analysis relating changes in dominant scale and intensity to decadal changes in mean annual rainfall in order to deduce a possible connection between dynamics of bush encroachment and rainfall variability. Our results indicate a significant nonlinear relationship between changes in the dominant scale and decadal changes in mean annual rainfall (R2 = 0.85, F13 = 35.96, P < 0.01). In contrast, the relationship between decadal changes in mean annual rainfall and changes in intensity was weak and not significant (R2 = 0.29, F13 = 2.69, P = 0.106). These results imply the importance of annual rainfall in explaining long‐term changes in the dominant scale of woody patches. However, mechanisms other than rainfall probably explain changes in the intensity of bush cover, and this needs further investigation.  相似文献   

3.
The study of temporal interactions between native insects and alien invaders can be facilitated by the ability to forecast adult emergence. We used field‐collected adult emergence data of Sirex noctilio Fabricius (Hymenoptera: Siricidae), a woodwasp native of Eurasia that has recently invaded northeastern North America, and Sirex nigricornis Fabricius, a woodwasp native to North America, to develop and test cumulative degree‐day (CDD) models. Five data sets were collected each in Ontario, Canada (S. noctilio) and Louisiana, USA (S. nigricornis) over 4 years; three data sets were used to develop models and two were used to test them. Males and females of each species were modelled separately. After testing several potential temperatures, chosen thresholds for CDD were 0 °C lower threshold and 25 °C upper threshold for both Sirex spp. We used a three‐parameter Gompertz growth function to model Sirex spp. emergence against CDD. Models predicted 10% emergence of S. noctilio in Ontario after 1 239 and 1 280 CDD, for males (start date = 1 April; R2 = 0.91) and females (start date = 1 April; R2 = 0.86), respectively. Models predicted 10% emergence of S. nigricornis in Louisiana after 3 980 and 5 016 CDD, for males (start date = 1 May; R2 = 0.83) and females (start date = 1 March; R2 = 0.73), respectively. Cumulative degree‐day models predicted 10 and 90% emergence of woodwasp populations with less error (1–13%) than they did 50% emergence (5–27%). For both Sirex spp., male emergence began a few days before and concluded at about the same time as that of females. In southern Ontario, models predict that S. noctilio adults will be in flight between 1 015 and 2 430 CDD (1 April start date for CDD; from early‐July until mid‐September). In Louisiana, models predict that S. nigricornis adults will be in flight between 3 854 and 4 700 CDD (1 May start date for CDD; from early‐October until late‐November).  相似文献   

4.
This research aims at developing a remote sensing technique for monitoring the interannual variability of the European larch phenological cycle in the Alpine region of Aosta Valley (Northern Italy) and to evaluate its relationships with climatic factors. Phenological field observations were conducted in eight test sites from 2005 to 2007 to determine the dates of completion of different phenological phases. MODerate Resolution Imaging Spectrometer (MODIS) 250 m 16‐days normalized difference vegetation index (NDVI) time series were fitted with double logistic curves and the dates corresponding to different features of the curves were determined. Comparison with field data showed that the features of the fitted NDVI curve that allowed the best estimate of the start and end of the growing season were the zeroes of its third derivative (MAE of 6 and 4 days, respectively). The start and end of season were also estimated with the spring warming (SW) and growing season index (GSI) phenological models. MODIS start and end of season dates generally agreed with those obtained by the SW and GSI climate‐driven phenological models. However, phenological models provided erroneous results when applied in years with anomalous meteorological conditions. The relationships between interannual variability of the larch phenological cycle and climate were investigated by comparing the mean start and end of season yearly anomalies with air temperature anomalies. A strong linear relationship (R2=0.91) was found between mean spring temperatures and mean start of season dates, with an increase of 1 °C in mean spring temperature leading to a 7‐day anticipation of mean larch bud‐burst date. Leaf coloring dates were found to be best related with mean September temperature (R2=0.77), but with higher spring temperatures appearing to lead to earlier leaf coloring.  相似文献   

5.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

6.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

7.
Abstract We present a regional fuel load model (1 km2 spatial resolution) applied in the southern African savanna region. The model is based on a patch-scale production efficiency model (PEM) scaled up to the regional level using empirical relationships between patch-scale behavior and multi-source remote sensing data (spatio-temporal variability of vegetation and climatic variables). The model requires the spatial distribution of woody vegetation cover, which is used to determine separate respiration rates for tree and grass. Net primary production, grass and tree leaf death, and herbivory are also taken into account in this mechanistic modeling approach. The fuel load model has been calibrated and validated from independent measurements taken from savanna vegetation in Africa southward from the equator. A sensitivity analysis on the effect of climate variables (incoming radiation, air temperature, and precipitation) has been conducted to demonstrate the strong role that water availability has in determining productivity and subsequent fuel load over the southern African region. The model performance has been tested in four different areas representative of a regional increasing rainfall gradient—Etosha National Park, Namibia, Mongu and Kasama, Zambia, as well as in Kruger National Park, South Africa. Within each area, we analyze model output from three different magnitudes of canopy coverage (<5, 30, and 50%). We find that fuel load ranges predicted by the model are globally in agreement with field measurements for the same year. High rainfall sustains green herbaceous production late in the dry season and delays tree leaf litter production. Effect of water on production varies across the rainfall gradient with delayed start of green material production in more arid regions.  相似文献   

8.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

9.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

10.
Afro‐Palaearctic migrants are declining to a greater degree than other European species, suggesting that processes occurring in Africa or on migration may be driving these trends. Constraints on food availability on the wintering grounds may contribute to these declines but little is known about when and where these resource constraints may occur. Sufficient resources are particularly important prior to spring migration, when migrants must cross the Sahara Desert. We examined mass gain and departure phenology in a long‐distance Palaearctic passerine migrant to determine the degree to which pre‐migratory fattening occurs in their long‐term non‐breeding territories in the Guinea Savannah region of Africa. We monitored 75 Whinchats Saxicola rubetra for departure from their non‐breeding territories in one spring, and analysed mass data of 377 Whinchats collected over three non‐breeding seasons plus 141 migrating Whinchats caught in April over 8 years, all within the same few square kilometres of human‐modified Guinea Savannah in central Nigeria. Whinchats left their winter territories throughout April, with males departing on average 8 days earlier than females. However, there was no evidence that time of departure from territory was linked to age, body size or mass at capture. Whinchats departed their territories with a predicted mass of 16.8 ± 0.3 g, considerably less than the c. 24 g required for the average Whinchat to cross the Sahara directly. Comparing departure dates with arrival dates in southern Europe showed a discrepancy of at least 2 weeks, suggesting that many Whinchats spend considerable time on pre‐migratory fuelling outside their winter territory prior to crossing the Sahara. Overwintering birds gained mass slowly during February and March (0.03 g/day), and non‐territorial or migrating birds at a much higher rate in April (at least 0.23 g/day), with up to 20% of migrating Whinchats in April potentially having sufficient fuel loads to cross the Sahara directly from central Nigeria. Our results suggest that most Whinchats leave their winter territories to fatten up locally or, possibly, by staging further north, closer to the southern limit of the Sahara. Resource constraints are therefore likely to be particularly focused in West Africa during mid‐April and possibly at staging areas before the crossing of the Sahara Desert.  相似文献   

11.
Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai–Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green‐up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote‐sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai–Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground‐based herbaceous plant green‐up dates using 72 green‐up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai–Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote‐sensing studies can be verified by most of the green‐up time series, and no robust evidence for a warmer winter‐induced later green‐up dates can be detected. Thus, chilling requirements may not be an important driver influencing green‐up responses to spring warming. Moreover, temperature‐only control of green‐up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green‐up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green‐up dates. Therefore, prediction of vegetation growth and carbon balance responses to global climate change on the world's roof should integrate both temperature and snowfall variations.  相似文献   

12.
Biogas could provide a more sustainable energy source than wood fuels for rural households in sub‐Saharan African. However, functioning of biogas digesters can be limited in areas of low water availability. The water required is approximately 50 dm3 day?1 for each cow and 10 dm3 day?1 for each pig providing manure to the digester, or 25 (±6) dm3 day?1 for each person in the household, using a digester volume of 1.3 (±0.3) m3 capita?1. Here, we consider the potential of domestic water recycling, rainwater harvesting, and aquaculture to supply the water needed for digestion in different countries of sub‐Saharan Africa. Domestic water recycling was found to be important in every country but was usually insufficient to meet the requirements of the digester, with households in 72% of countries need to collect additional water. Rooftop rainwater harvesting also has an important role, iron roofs being more effective than thatched roofs at collecting water. However, even with an iron roof, the size of roof commonly found in sub‐Saharan Africa (15 to 40 m2) is too small to collect sufficient water, requiring an extra area (in m2) for each person of (R/100) (where R is the rainfall in mm). If there is a local market for fish, stocking a pond with tilapia, fed on plankton growing on bioslurry from the digester, could provide an important source of additional income and hold the water required by the digester. In areas where rainfall is low and seasonal, the fishpond might be stocked only in the rainy season, allowing the pond to be covered during the dry period to reduce evaporation. If evaporative losses (E in mm) exceed rainfall, an extra catchment area is needed to maintain the water level in the pond, equivalent to approximately (1.5 × ((E?R)/R)) m2 for each person in the household.  相似文献   

13.
A quick, green, and sensitive method for chiral separation and determination of fluazifop‐butyl enantiomers in tobacco and soil was established by ultra‐performance convergence chromatography with tandem mass spectrometry (UPC2‐MS/MS). The baseline separation was obtained on an ACQUITY UPC2 Trefoil CEL2 column in 4 minutes with CO2 and methanol as mobile phase. Column temperature, auto back pressure regulator pressure (ABPR), and modifier solvent were optimized to obtain the best separation efficiency. Under the optimal conditions, the recoveries of both enantiomers were 82.8% to 99.5% with relative standard deviations (RSDs) less than 5.5% at three different concentration levels in two matrices. Good coefficients of determination (R2 ≥ 0.9976) were achieved over the concentration range of 10 to 500 ng/mL. The limits of detection (LODs) for all enantiomers in the two matrices varied from 1.6 to 2.1 μg/kg, and the limits of quantification (LOQs) did not exceed 7.0 μg/kg. The proposed method was then successfully applied to analyze authentic samples, confirming that it was a green, convenient, and reliable strategy for the analysis of fluazifop‐butyl enantiomers in tobacco and soil.  相似文献   

14.
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.  相似文献   

15.
Abstract. Question: Bush encroachment (i.e. an increase in density of woody plants often unpalatable to domestic livestock) is a serious problem in many savannas and threatens the livelihood of many pastoralists. Can we derive a better understanding of the factors causing bush encroachment by investigating the scale dependency of patterns and processes in savannas? Location: An arid savanna in the Khomas Hochland, Namibia. Methods: Patterns of bush, grass, and soil nutrient distribution were surveyed on several scales along a rainfall gradient, with emphasis on intraspecific interactions within the dominant woody species, Acacia reficiens. Results: Savannas can be interpreted as patch‐dynamic systems where landscapes are composed of many patches (a few ha in size) in different states of transition between grassy and woody dominance. Conclusions: In arid savannas, this patchiness is driven both by rainfall that is highly variable in space and time and by inter‐tree competition. Within the paradigm of patch‐dynamic savannas, bush encroachment is part of a cyclical succession between open savanna and woody dominance. The conversion from a patch of open savanna to a bush‐encroached area is initiated by the spatial and temporal overlap of several (localized) rainfall events sufficient for Acacia germination and establishment. With time, growth and self‐thinning will transform the bush‐encroached area into a mature Acacia stand and eventually into open savanna again. Patchiness is sustained due to the local rarity (and patchiness) of rainfall sufficient for germination of woody plants as well as by plant‐soil interactions.  相似文献   

16.
Aim Previous genetic studies of African savanna ungulates have indicated Pleistocene refugial areas in East and southern Africa, and recent palynological, palaeovegetation and fossil studies have suggested the presence of a long‐standing refugium in the south and a mosaic of refugia in the east. Phylogeographic analysis of the common eland antelope, Taurotragus oryx (Bovidae), was used to assess these hypotheses and the existence of genetic signatures of Pleistocene climate change. Location The sub‐Saharan savanna biome of East and southern Africa. Methods Mitochondrial DNA control‐region fragments (414 bp) from 122 individuals of common eland were analysed to elucidate the phylogeography, genetic diversity, spatial population structuring, historical migration and demographic history of the species. The phylogeographic split among major genetic lineages was dated using Bayesian coalescent‐based methods and a calibrated fossil root of 1.6 Ma for the split between the common eland and the giant eland, Taurotragus derbianus. Results Two major phylogeographic lineages comprising East and southern African localities, respectively, were separated by a net nucleotide distance of 4.7%. A third intermediate lineage comprised only three haplotypes, from Zimbabwe in southern Africa. The estimated mutation rate of 0.097 Myr?1 revealed a more recent common ancestor for the eastern lineage (0.21 Ma; 0.07–0.37) than for the southern lineage (0.35 Ma; 0.10–0.62). Compared with the latter, the eastern lineage showed pronounced geographic structuring, lower overall nucleotide diversity, higher population differentiation, and isolation‐by‐distance among populations. Main conclusions The data support the hypothesis of Pleistocene refugia occurring in East and southern Africa. In agreement with palynological, palaeovegetation and fossil studies, our data strongly support the presence of a longer‐standing population in the south and a mosaic of Pleistocene refugia in the east, verifying the efficacy of genetic tools in addressing such questions. The more recent origin of the common eland inhabiting East Africa could result from colonization following extinction from the region. Only two other dated African ungulate phylogenies have been published, applying different methods, and the similarity of dates obtained from the three distinct approaches indicates a significant event c. 200 ka, which left a strong genetic signature across a range of ungulate taxa.  相似文献   

17.
Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire‐mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate–vegetation–fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal‐inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial‐scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel‐limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean‐annual temperature (~22 °C) allowed productive C4 grasses with high water‐use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry‐season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000–6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation‐driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass‐dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry‐savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire‐mediated ecosystem processes.  相似文献   

18.
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QSTFST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient.  相似文献   

19.
The timing of migration is one of the key life‐history parameters of migratory birds. It is expected to be under strong selection, to be sensitive to changing environmental conditions and to have implications for population dynamics. However, most phenological studies do not describe arrival and departure phenologies for a species in a way that is robust to potential biases, or that can be clearly related to breeding populations. This hampers our ability to understand more fully how climate change may affect species’ migratory strategies, their life histories and ultimately their population dynamics. Using generalized additive models (GAMs) and extensive large‐scale data collected in the UK over a 40‐year period, we present standardized measures of migration phenology for common migratory birds, and examine how the phenology of bird migration has changed in the UK since the 1960s. Arrival dates for 11 of 14 common migrants became significantly earlier, with six species advancing their arrival by more than 10 days. These comprised two species, Blackcap Sylvia atricapilla and Chiffchaff Phylloscopus collybita, which winter closest to Britain in southern Europe and the arid northern zone of Africa, Common Redstart Phoenicurus phoenicurus, which winters in the arid zone, and three hirundines (Sand Martin Riparia riparia, House Martin Delichon urbicum and Barn Swallow Hirundo rustica), which winter in different parts of Africa. Concurrently, departure dates became significantly later for four of the 14 species and included species that winter in southern Europe (Blackcap and Chiffchaff) and in humid zones of Africa (Garden Warbler Sylvia borin and Whinchat Saxicola rubetra). Common Swift Apus apus was the exception in departing significantly earlier. The net result of earlier arrival and later departure for most species was that length of stay has become significantly longer for nine of the 14 species. Species that have advanced their timing of arrival showed the most positive trends in abundance, in accordance with previous studies. Related in part to earlier arrival and the relationship above, we also show that species extending their stay in Great Britain have shown the most positive trends. Further applications of our modelling approach will provide opportunities for more robust tests of relationships between phenological change and population dynamics than have been possible previously.  相似文献   

20.
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall‐driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of prerain flush effects in some parts of Africa. The spatial extent of this prerain green‐up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to‐date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of prerain green‐up over Africa than previously reported, with prerain green‐up being the norm rather than the exception. We also show the relative sparsity of postrain green‐up, confined largely to the Sudano‐Sahel region. While the prerain green‐up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号