首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.  相似文献   

2.
Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.  相似文献   

3.
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.  相似文献   

4.
Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis.  相似文献   

5.
The epithelium of the small intestinal crypt, which has a vital role in protecting the underlying tissue from the harsh intestinal environment, is completely renewed every 4–5 days by a small pool of stem cells at the base of each crypt. How is this renewal controlled and homeostasis maintained, particularly given the rapid nature of this process? Here, based on the recent observations from in vitro “mini gut” studies, we use a hybrid stochastic model of the crypt to investigate how exogenous niche signaling (from Wnt and BMP) combines with auto-regulation to promote homeostasis. This model builds on the sub-cellular element method to account for the three-dimensional structure of the crypt, external regulation by Wnt and BMP, internal regulation by Notch signaling, as well as regulation by internally generated diffusible signals. Results show that Paneth cell derived Wnt signals, which have been observed experimentally to sustain crypts in cultured organs, have a dramatically different influence on niche dynamics than does mesenchyme derived Wnt. While this signaling can indeed act as a redundant backup to the exogenous gradient, it introduces a positive feedback that destabilizes the niche and causes its uncontrolled expansion. We find that in this setting, BMP has a critical role in constraining this expansion, consistent with observations that its removal leads to crypt fission. Further results also point to a new hypothesis for the role of Ephrin mediated motility of Paneth cells, specifically that it is required to constrain niche expansion and maintain the crypt’s spatial structure. Combined, these provide an alternative view of crypt homeostasis where the niche is in a constant state of expansion and the spatial structure of the crypt arises as a balance between this expansion and the action of various sources of negative regulation that hold it in check.  相似文献   

6.
7.
Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury.  相似文献   

8.

Background

In celiac disease (CD), intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh)/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.

Methods and Findings

Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC) and 24 patients with diagnosed acute celiac disease (A-CD) intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5), an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH) and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.

Conclusions

Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.  相似文献   

9.
The intestinal epithelium has emerged as one of the links between the innate and adaptive immune systems. Novel roles have been elucidated for its participation in antigen uptake and presentation, costimulatory signaling, and intestinal homeostasis. Its concomitant interaction with immune cells and commensal flora demonstrates the epithelium's multifaceted responsibility in protecting against intestinal pathology while maintaining immune competence. Its functional capacity is now more clearly defined in disease states such as celiac disease, Crohn's disease, and ulcerative colitis and in maintaining intestinal integrity through toll-like receptor signaling pathways.  相似文献   

10.
Bone morphogenetic protein (BMP) signaling within the gastrointestinal tract is complex. BMP ligands and their receptors are expressed in both epithelial and mesenchymal compartments, suggesting bidirectional signaling between these two entities. Despite an increasing interest in BMP signaling in gut physiology and pathologies, the distinct contribution of BMP signaling in the epithelium vs. the mesenchyme in gastrointestinal homeostasis remains to be established. We aimed to investigate the role of epithelial BMP signaling in gastric organogenesis, gland morphogenesis, and maintenance of epithelial cell functions. Using the Cre/loxP system, we generated a mouse model with an early deletion during development of BMP receptor 1A (Bmpr1a) exclusively in the foregut endoderm. Bmpr1a(ΔGEC) mice showed no severe abnormalities in gastric organogenesis, gland epithelial proliferation, or morphogenesis, suggesting only a minor role for epithelial BMP signaling in these processes. However, early loss of BMP signaling in foregut endoderm did impact on gastric patterning, leading to an anteriorization of the stomach. In addition, numbers of parietal cells were reduced in Bmpr1a(ΔGEC) mice. Epithelial BMP deletion significantly increased the numbers of chromogranin A-, ghrelin-, somatostatin-, gastrin-, and serotonin-expressing gastric endocrine cells. Cancer never developed in young adult (<100 days) Bmpr1a-inactivated mice although a marker of spasmolytic polypeptide-expressing metaplasia was upregulated. Using this model, we have uncovered that BMP signaling negatively regulates the proliferation and commitment of endocrine precursor cells. Our data also indicate that loss of BMP signaling in epithelial gastric cells alone is not sufficient to induce gastric neoplasia.  相似文献   

11.
Aiguo Tian 《Fly》2017,11(4):297-302
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.  相似文献   

12.
Keller B  Yang T  Chen Y  Munivez E  Bertin T  Zabel B  Lee B 《PloS one》2011,6(1):e16421
TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI) in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.  相似文献   

13.
14.
Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.  相似文献   

15.
Membrane trafficking is defined as the vesicular transport of proteins into, out of, and throughout the cell. In intestinal enterocytes, defects in endocytic/recycling pathways result in impaired function and are linked to diseases. However, how these trafficking pathways regulate intestinal tissue homeostasis is poorly understood. Using the Drosophila intestine as an in vivo system, we investigated enterocyte-specific functions for the early endosomal machinery. We focused on Rab21, which regulates specific steps in early endosomal trafficking. Depletion of Rab21 in enterocytes led to abnormalities in intestinal morphology, with deregulated cellular equilibrium associated with a gain in mitotic cells and increased cell death. Increases in apoptosis and Yorkie signaling were responsible for compensatory proliferation and tissue inflammation. Using an RNA interference screen, we identified regulators of autophagy and membrane trafficking that phenocopied Rab21 knockdown. We further showed that Rab21 knockdown-induced hyperplasia was rescued by inhibition of epidermal growth factor receptor signaling. Moreover, quantitative proteomics identified proteins affected by Rab21 depletion. Of these, we validated changes in apolipoprotein ApoLpp and the trehalose transporter Tret1-1, indicating roles for enterocyte Rab21 in lipid and carbohydrate homeostasis, respectively. Our data shed light on an important role for early endosomal trafficking, and Rab21, in enterocyte-mediated intestinal epithelium maintenance.  相似文献   

16.
Signaling by bone morphogenetic proteins (BMPs) plays pivotal roles in embryogenesis, adult tissue homeostasis, and disease. Recent studies revealed that the well-established WNT agonist R-spondin 2 (RSPO2) is also a BMP receptor (BMP receptor type 1A) antagonist, with roles in early Xenopus embryogenesis and human acute myeloid leukemia (AML). To uncouple the BMP antagonist function from the WNT agonist function and to promote development of AML therapeutics, here we identified a 10-mer peptide (RW) derived from the thrombospondin 1 domain of RSPO2, which specifically prevents binding between RSPO2 and BMP receptor type 1A without altering WNT signaling. We also show that a corresponding RW dendrimer (RWd) exhibiting improved half-life relieves inhibition of BMP receptor signaling by RSPO2 in human AML cells, reduces cell growth, and induces differentiation. Moreover, microinjection of RWd in Xenopus embryos ventralizes the dorsoventral embryonic patterning by upregulating BMP signaling without affecting WNT signaling. Our study corroborates the function of RSPO2 as a BMP receptor antagonist and provides a proof of concept for pharmacologically uncoupling BMP antagonist from WNT agonist functions of RSPO2 using the inhibitor peptide RWd with enhanced target selectivity and limited side effects.  相似文献   

17.
肠道是最复杂的器官之一,负责营养的吸收和消化。肠道具有多层结构保护整个肠道免受病原体的侵害。肠道上皮是由单层柱状上皮细胞组成,是抵抗病原体的第一道屏障。因此,肠上皮必须保持完整性以保护肠免受感染和毒性剂的侵害。上皮细胞分为两个谱系(吸收型与分泌型),并且每隔3~4天脱落至肠腔中。细胞的快速更替是由于肠道干细胞的存在,肠道干细胞排列在隐窝底部终极分化的潘氏细胞之间并沿隐窝绒毛轴分化成不同的上皮细胞。一旦肠道干细胞受到损伤,潘氏细胞将通过提供WNT配体和Notch刺激来补充肠道干细胞。因此,潘氏细胞充当辅助细胞以维持干细胞微环境,即生态位。该综述探讨了干细胞和潘氏细胞之间的相互作用,进一步探讨了维持肠道稳态的信号通路。  相似文献   

18.
19.
To investigate the role of bone morphogenetic protein (BMP) signaling in osteoclastogenesis in vivo, we eliminated BMPRII in osteoclasts by creating a BMPRIIfl/fl;lysM-Cre mouse strain. Conditional knock-out (cKO) mice are osteopetrotic when compared with WT controls due to a decrease in osteoclast activity. Bone marrow macrophages (BMMs) isolated from cKO mice are severely inhibited in their capacity to differentiate into mature osteoclasts in the presence of M-CSF and receptor activator of NF-κB (RANK) ligand. We also show that BMP noncanonical (MAPK) and canonical (SMAD) pathways are utilized at different stages of osteoclast differentiation. BMP2 induces p38 phosphorylation in pre-fusion osteoclasts and increases SMAD phosphorylation around osteoclast precursor fusion. Phosphorylation of MAPKs was decreased in differentiated BMMs from cKO animals. Treating BMMs with the SMAD inhibitor dorsomorphin confirms the requirement for the canonical pathway around the time of fusion. These results demonstrate the requirement for BMP signaling in osteoclasts for proper bone homeostasis and also explore the complex signaling mechanisms employed by BMP signaling during osteoclast differentiation.  相似文献   

20.
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号