首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual‐ and trait‐based version of the DGVM LPJmL (Lund‐Potsdam‐Jena managed Land) called LPJmL‐ flexible individual traits (LPJmL‐FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL‐FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of Rubisco per leaf area (), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade‐offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade‐offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species‐rich center of the region with relatively low climatic variability. LPJmL‐FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.  相似文献   

4.
5.
探究功能性状沿着环境梯度如何变化一直以来是基于性状的群落生态学的核心问题之一。尽管功能性状存在种内和种间变异, 但种内变异沿环境梯度如何变化仍有待探究。本文以鼎湖山南亚热带常绿阔叶林1.44 ha塔吊样地内16个树种的2,820个个体为研究对象, 探究4种叶功能性状(比叶面积、叶干物质含量、叶厚度和叶面积)沿群落垂直层次的种内变异。首先, 利用随机效应线性模型量化塔吊样地内的种内变异和种间变异; 其次, 利用Kmeans函数将森林的垂直层次划分为灌木层、亚冠层和林冠层, 并通过构建回归模型探究叶功能性状在群落垂直层次中的种内变异格局。最后, 应用混合线性模型和单因素方差分析的方法探究叶功能性状沿垂直层次的种内变异是否具有物种依赖性。结果表明: 在局域群落中, 并非所有叶功能性状的种内变异都低于种间变异; 叶功能性状在不同垂直层次的种内变异格局存在显著差异, 且种内变异与垂直范围呈正相关; 叶功能性状的种内变异具有较强的物种依赖性, 因此树种差异相对于小环境解释了更多的性状变异; 此外, 不同叶功能性状的种内变异沿垂直层次的变化趋势并不一致。本研究发现种内变异对于物种共存具有重要作用。  相似文献   

6.
Ecological studies are increasingly moving towards trait‐based approaches, as the evidence mounts that functions, as opposed to taxonomy, drive ecosystem service delivery. Among ecosystem services, biological control has been somewhat overlooked in functional ecological studies. This is surprising given that, over recent decades, much of biological control research has been focused on identifying the multiple characteristics (traits) of species that influence trophic interactions. These traits are especially well developed for interactions between arthropods and flowers – important for biological control, as floral resources can provide natural enemies with nutritional supplements, which can dramatically increase biological control efficiency. Traits that underpin the biological control potential of a community and that drive the response of arthropods to environmental filters, from local to landscape‐level conditions, are also emerging from recent empirical studies. We present an overview of the traits that have been identified to (i) drive trophic interactions, especially between plants and biological control agents through determining access to floral resources and enhancing longevity and fecundity of natural enemies, (ii) affect the biological control services provided by arthropods, and (iii) limit the response of arthropods to environmental filters, ranging from local management practices to landscape‐level simplification. We use this review as a platform to outline opportunities and guidelines for future trait‐based studies focused on the enhancement of biological control services.  相似文献   

7.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   

8.
9.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   

10.
Variation in natural selection across heterogeneous landscapes often produces (a) among‐population differences in phenotypic traits, (b) trait‐by‐environment associations, and (c) higher fitness of local populations. Using a broad literature review of common garden studies published between 1941 and 2017, we documented the commonness of these three signatures in plants native to North America's Great Basin, an area of extensive restoration and revegetation efforts, and asked which traits and environmental variables were involved. We also asked, independent of geographic distance, whether populations from more similar environments had more similar traits. From 327 experiments testing 121 taxa in 170 studies, we found 95.1% of 305 experiments reported among‐population differences, and 81.4% of 161 experiments reported trait‐by‐environment associations. Locals showed greater survival in 67% of 24 reciprocal experiments that reported survival, and higher fitness in 90% of 10 reciprocal experiments that reported reproductive output. A meta‐analysis on a subset of studies found that variation in eight commonly measured traits was associated with mean annual precipitation and mean annual temperature at the source location, with notably strong relationships for flowering phenology, leaf size, and survival, among others. Although the Great Basin is sometimes perceived as a region of homogeneous ecosystems, our results demonstrate widespread habitat‐related population differentiation and local adaptation. Locally sourced plants likely harbor adaptations at rates and magnitudes that are immediately relevant to restoration success, and our results suggest that certain key traits and environmental variables should be prioritized in future assessments of plants in this region.  相似文献   

11.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   

12.
13.

Aim

The pattern of increasing biological diversity from high latitudes to the equator [latitudinal diversity gradient (LDG)] has been recognized for > 200 years. Empirical studies have documented this pattern across many different organisms and locations. Our goal was to quantify the evidence for the global LDG and the associated spatial, taxonomic and environmental factors. We performed a meta‐analysis on a large number of individual LDGs that have been published in the 14 years since Hillebrand's ground‐breaking meta‐analysis of the LDG, using meta‐analysis and meta‐regression approaches largely new to the fields of ecology and biogeography.

Location

Global.

Time period

January 2003–September 2015.

Major taxa studied

Bacteria, protists, plants, fungi and animals.

Methods

We synthesized the outcomes of 389 individual cases of LDGs from 199 papers published since 2003, using hierarchical mixed‐effects meta‐analysis and multiple meta‐regression. Additionally, we re‐analysed Hillebrand's original dataset using modern methods.

Results

We confirmed the generality of the LDG, but found the pattern to be weaker than was found in Hillebrand's study. We identified previously unreported variation in LDG strength and slope across longitude, with evidence that the LDG is strongest in the Western Hemisphere. Locational characteristics, such as habitat and latitude range, contributed significantly to LDG strength, whereas organismal characteristics, including taxonomic group and trophic level, did not. Modern meta‐analytical models that incorporate hierarchical structure led to more conservative and sometimes contrasting effect size estimates relative to Hillebrand's initial analysis, whereas meta‐regression revealed underlying patterns in Hillebrand's dataset that were not apparent with a traditional analysis.

Main conclusions

We present evidence of global latitudinal, longitudinal and habitat‐based patterns in the LDG, which are apparent across both marine and terrestrial realms and over a broad taxonomic range of organisms, from bacteria to plants and vertebrates.  相似文献   

14.
Climate change and pollution are considered as major drivers of biodiversity loss. Climate change is a global multi-stressor, whereas pollution predominantly acts on the local scale. Organisms traits provide mechanistic links between biotic responses and stressors. We reviewed and analyzed the literature on the responses of vertebrates, invertebrates, microorganisms and plants traits to climate change (437 studies) and pollution (121 studies), to assess whether there was uniformity (i.e. convergence) in the responses of traits to the multi-stressors. For climate change, the traits related to tolerance responded uniformly across taxonomic groups, indicating trait convergence. For pollution, the low number of studies hampered a comparison across taxonomic groups. However, aquatic invertebrates that are tolerant, or exhibit high dispersal or reproduction capacities increased in response to pollution, whereas body mass and size increased in phytoplankton and fish, respectively. We provide a set of traits that have the potential to predict ecosystem-wide effects of climate change and pollution.  相似文献   

15.
  1. A recent analysis of variation in six major traits conducted on a large worldwide sample of vascular plant species showed that three‐quarters of trait variation was captured by a two‐dimensional global spectrum of plant form and function (“global spectrum” hereafter). We developed the PhenoSpace application, whose aim is to visualize and export the position of any individual/population/species in the phenotypic space of the global spectrum.
  2. PhenoSpace is a Shiny application that helps users to manipulate and visualize data pertaining to the global spectrum of plant form and function. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/PhenoSpace/.
  3. PhenoSpace has three main functionalities. First, it allows users to visualize the phenotypic space of the global spectrum using different combinations of traits and growth forms. Second, trait data from any new user‐defined dataset can be projected onto the phenotypic space of the global spectrum, provided that at least two of the six traits are available. Finally, figures produced and loadings of the imported data on the PCA axes can be downloaded, allowing users to conduct further analyses.
  4. PhenoSpace fulfills the practical goal of positioning plants in the phenotypic space of the global spectrum, making it possible to compare trait variation at any level of organization against the worldwide background. This serves a major aim of comparative plant ecology, which is to put specific sets of individuals, populations or species into a broader context, facilitating comparison and synthesis of results across different continents and environments using relevant indicators of plant design and function.
  相似文献   

16.
17.
蚂蚁群落与栖境关系研究进展及新趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
生物群落与栖境的关系是生态学研究的核心之一,蚂蚁群落由于在陆地生态系统中的生物量、分布以及具备的生态功能的重要性,是研究这种关系的理想对象。在查阅大量文献的基础上,简述了蚂蚁物种多样性与栖境关系研究现状。介绍了蚂蚁功能群划分以及在不同尺度上与栖境关系的应用研究,评述了功能群应用的限制。阐明了功能特征的定义以及基于形态特征和营养级方面的蚂蚁群落功能特征与栖境的研究,并对功能特征的研究趋势进行了展望。  相似文献   

18.
Chronic anthropogenic disturbances (CAD) and rainfall are important drivers of plant community assembly, but little is known about the role played by inter‐ and intraspecific trait variation as communities respond to these pervasive forces. Here, we examined the hypothesis that lower precipitation and higher CAD reduce both intra‐ and interspecific trait variation in Caatinga dry forests. We sampled woody plants across 15 plots along precipitation and CAD gradients and measured resource‐use traits. The effects of precipitation and CAD on RaoQ functional diversity were decomposed into species turnover and intraspecific variability. We used “T‐statistics” to assess the trait sorting from the regional pool to local communities (i.e., external filtering), and within‐community forces leading to low trait overlap (i.e., internal filtering) at individual and species levels. Intraspecific variability explained at least one‐third of the total trait variation and 46% of variation in multitrait diversity across communities. Increasing disturbance reduced multitrait diversity, while precipitation affected some particular traits, such as wood density. Overall, precipitation determined species sorting across communities, while disturbance relaxed internal filters, leading to higher trait overlap within communities due to higher intraspecific variability. Our results suggest that the woody Caatinga flora contains a substantial amount of both inter‐ and intraspecific trait variation. This variation is not randomly distributed within and across communities, but varies according to rainfall conditions and disturbance intensity. These findings reinforce the emerging idea that human disturbances can reorganize plant communities at multiple scales and highlight trait variability as a key biological asset for the resilience of dry forests.  相似文献   

19.
Functional traits of leaves and fine root vary broadly among different species, but little is known about how these interspecific variations are coordinated between the two organs. This study aims to determine the interspecific relationships between corresponding leaf and fine‐root traits to better understand plant strategies of resource acquisition. SLA (Specific leaf area), SRL (specific root length), mass‐based N (nitrogen) and P (phosphorus) concentrations of leaves and fine roots, root system, and plant sizes were measured in 23 woody species grown together in a common garden setting. SLA and SRL exhibited a strong negative relationship. There were no significant relationships between corresponding leaf and fine‐root nutrient concentrations. The interspecific variations in plant height and biomass were tightly correlated with root system size characteristics, including root depth and total root length. These results demonstrate a coordinated plant size‐dependent variation between shoots and roots, but for efficiency, plant resource acquisition appears to be uncoupled between the leaves and fine roots. The different patterns of leaf and fine‐root traits suggest different strategies for resource acquisition between the two organs. This provides insights into the linkage between above‐ and belowground subsystems in carbon and nutrient economy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号