共查询到20条相似文献,搜索用时 0 毫秒
1.
Ant–plant mutualisms are usually regarded as driven by ants defending plants against herbivores in return for plant‐produced food rewards and housing. However, ants may provide additional services. In a review of published studies on ant–pathogen–plant interactions, we investigated whether ants’ extensive hygiene measures, including the use of ant‐produced antibiotics, extend to their host plants and reduce plant pathogen loads. From 30 reported species combinations, we found that the presence of ants lead to reduced pathogen levels in 18 combinations and to increased levels in 6. On average, ants significantly reduced pathogen incidence with 59%. This effect size did not differ significantly from effect sizes reported from meta‐analyses on herbivore protection. Thus, pathogen and herbivore protection could be of equal importance in ant–plant mutualisms. Considering the abundance of these interactions, ecological impacts are potentially high. Furthermore, awareness of this service may stimulate the development of new measures to control plant diseases in agriculture. It should be noted, though, that studies were biased toward tropical ant–plant symbioses and that the literature in the field is limited at present. Future research on plant pathogens is needed to enhance our understanding of ant–plant mutualisms and their evolution. 相似文献
2.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described. 相似文献
3.
Heather Campbell Ian R. Townsend Mark D. E. Fellowes James M. Cook 《African Journal of Ecology》2013,51(4):590-598
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species. 相似文献
4.
E. O. Canedo‐Júnior G. S. Santiago C. R. Ribas L. F. Zurlo R. G. Cuissi B. Souza L. D. B. Faria A. M. Rabello D. de L. Braga E. Silva 《Journal of Applied Entomology》2018,142(3):349-358
Most studies regarding ant–aphid interactions focus only on the direct effects of ants on tended aphids and aphidophagous predators, or the indirect effects on the host plant. Studies evaluating the effects of aphid‐tending ants on more than one trophic level are rare and evaluate only the presence or absence of such effects. Here we assessed the effect sizes of ants in a tri‐trophic system (common bean plants, aphids and lacewing larvae). We tested if the presence of aphid‐tending ants has positive effects on aphid abundance and host‐plant production and negative effects on aphid predator abundance. We also hypothesized that aphid‐tending ants affect more intensely trophic levels that are more directly related to them (i.e., first aphids, then aphid predators and then host plants). We tested these hypotheses in field mesocosms experiments using the presence and absence of ants. We found that aphid‐tending ants have great positive effects on final aphid abundance. Ants also positively affected the number of seeds; however, it was not possible to measure the effect size for this trophic level. Furthermore, ants had negative effects on lacewing larvae only at first release. The effect size of ants was greater for aphids, followed by lacewing larvae, and with no effects on the number of seeds produced. Ants positively affect aphids and host‐plant production, probably by way of honeydew collection preventing the development of entomophagous/saprophytic fungi. On the other hand, ants negatively affect lacewing larvae by excluding them from the host plant. In natural systems, several ant species may attend aphids, differently affecting the organisms of the various trophic levels within the ant–aphid interaction, thereby obscuring the real effect size of ants. Assessing the effect size of aphid‐tending ants on the organisms involved in ant–aphid interactions provides more realistic information about the effects of this interaction on natural systems. 相似文献
5.
In protective ant–plant mutualisms, plants offer ants food (such as extrafloral nectar and/or food bodies) and ants protect plants from herbivores. However, ants often negatively affect plant reproduction by deterring pollinators. The aggressive protection that mutualistic ants provide to some myrmecophytes may enhance this negative effect in comparison to plant species that are facultatively protected by ants. Because little is known about the processes by which myrmecophytes are pollinated in the presence of ant guards, we examined ant interactions with herbivores and pollinators on plant reproductive organs. We examined eight myrmecophytic and three nonmyrmecophytic Macaranga species in Borneo. Most of the species studied are pollinated by thrips breeding in the inflorescences. Seven of eight myrmecophytic species produced food bodies on young inflorescences and/or immature fruits. Food body production was associated with increased ant abundance on inflorescences of the three species observed. The exclusion of ants from inflorescences of one species without food rewards resulted in increased herbivory damage. In contrast, ant exclusion had no effect on the number of pollinator thrips. The absence of thrips pollinator deterrence by ants may be due to the presence of protective bracteoles that limit ants, but not pollinators, from accessing flowers. This unique mechanism may account for simultaneous thrips pollination and ant defense of inflorescences. 相似文献
6.
Annika S. Nelson Riley T. Pratt Jessica D. Pratt Richard Alexander Smith Cole T. Symanski Cathrine Prenot Kailen A. Mooney 《Oikos》2019,128(4):540-550
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels. 相似文献
7.
WESLEY DÁTTILO VÍCTOR RICO‐GRAY DOMINGOS J. RODRIGUES THIAGO J. IZZO 《Ecological Entomology》2013,38(4):374-380
- Recently, several studies have focused on structural properties of ant–plant networks. However, little is known about the role of abiotic factors on these networks.
- As a result of different abiotic factors that can affect the patterns of ant–plant interactions, it was tested whether soil pH and canopy cover contribute to variation in the nestedness of mutualistic (plants with extrafloral nectar–EFN) and neutral (plants without EFN) ant–plant networks.
- It was shown that only mutualistic networks were affected by soil pH. It was suggested that this may occur because the variation in soil pH directly influences the secreted nectar, and as there is a preference for nectar composition by ants, this could change the patterns of interaction in mutualistic networks. As prey availability is possibly the main factor influencing ants' presence on plants without EFN, soil pH should have little or no influence on the patterns of interaction in neutral networks.
- On the other hand, nestedness was not affected by canopy cover in mutualistic and neutral networks. In spite of that canopy cover (light availability) is directly related to the amount of nectar secreted, the volume of nectar may not be important for the structure of the networks. However, canopy cover varied little in this study site. This small variation could not be enough to change the nested pattern in mutualistic and neutral networks.
- In short, the present results show that the abiotic factors that affect the availability and quality of food resources may have important effects on the structure of trophic interactions in non‐symbiotic ant–plant networks.
8.
9.
Patrícia Gonçalves‐Souza Eduardo Gomes Gonçalves Elder Antônio Sousa Paiva 《Botanical journal of the Linnean Society. Linnean Society of London》2016,180(2):229-240
Extrafloral nectaries (EFNs) are involved in animal–plant interactions that lead to protection against herbivory. The presence of EFNs in Araceae is rare, besides Philodendron, there is report for only two other genera. With the aim to investigate the occurrence of EFNs in Philodendron and to describe the distribution patterns and structural organization of these glands, 75 Philodendron spp. were examined, 16 of which were selected for study by light microscopy. Three Homalomena spp. were also examined for EFNs, but these were not found. Philodendron martianum was employed as a model for additional study using scanning and transmission electron microscopy. The studied EFNs showed a high degree of structural similarity. They were present in the prophyll, leaf and spathe, becoming functional in young organs. In surface view, EFNs consisted of small areas and showed one or more stomata through which secretions were released. The secretory cells formed a globular region surrounded by ground parenchyma. In P. martianum, nectariferous parenchyma cells exhibited typical features of cells with high metabolism related to nectar secretion. These results allow us to infer that EFNs have a widespread occurrence in Philodendron, and they remain an exclusive character for this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 229–240. 相似文献
10.
Dino J. Martins 《African Journal of Ecology》2010,48(4):1115-1122
In obligate ant–plant mutualisms, the asymmetric engagement of a single plant species with multiple ant species provides the opportunity for partners to vary in their behaviour. Variation in behaviour has implications for the interactions with third‐party species such as herbivores. This study assessed the effect of obligate ant‐mutualists (Crematogaster mimosae, Crematogaster nigriceps and Tetraponera penzigi) inhabiting the African ant‐acacia (Acacia drepanolobium) on three mega‐herbivore browsers: the Maasai giraffe (Giraffa camelopardalis tippelskirchi), the reticulated giraffe (Giraffa c. reticulata) and the black rhino (Diceros bicornis). Giraffes are abundant and wide‐ranging herbivores of the acacias, whereas black rhinos are localized and perennial herbivores of the acacias. Multiyear field studies comparing the ants’ aggressive behaviour and browsing by mega‐herbivores suggested differences between the tending abilities of the primary ant species inhabiting A. drepanolobium. Trees occupied by the aggressive ant species C. mimosae had significantly less browsing by giraffes and black rhino than trees occupied by other ant species. The results of this study provide evidence that ant‐mutualists on African acacias can serve as deterrents to mega‐herbivores and that different ant species vary in their tending abilities. 相似文献
11.
Ant fauna on Mallotus japonicus, a shrub with extrafloral nectaries, was investigated in two types of habitat (the villages and the forest‐edges) on subtropical Okinawa Island, Japan. Twenty and 16 ant species were found, including 11 and 6 tramp species in the villages and in the forest‐edges, respectively. Occurrence of tramp species was higher in the villages than in the forest edges, supporting the idea that tramp species tend to dominate in disturbed habitats. Nevertheless, the richness of native ants was almost the same across the two habitat types. Consequently, the ant species diversity on M. japonicus appeared higher in the villages. However, monitoring has to be continued to determine whether the above findings represent a stable phenomenon of the community or just a temporary state. 相似文献
12.
Plant fitness is affected by herbivory, and in moist tropical forests, 70 percent of herbivore damage occurs on young leaves. Thus, to understand the effects of herbivory on tropical plant fitness, it is necessary to understand how tropical young leaves survive the brief, but critical, period of susceptibility. In this study, we surveyed three species of Inga during young leaf expansion. Three classes of toxic secondary metabolites (phenolics, saponins, and tyrosine), extrafloral nectar production, leaf area, and extrafloral nectary area were measured at randomly assigned young leaf sizes. In addition, all defenses were compared for potential trade‐offs during leaf expansion. No trade‐offs among defenses were found, and the concentration of all defenses, except tyrosine, decreased during leaf expansion. We suggest that plants continued to increase phenolic and saponin content, but at a rate that resulted in decreasing concentrations. In contrast, tyrosine content per leaf steadily increased such that a constant concentration was maintained regardless of young leaf size. Nectar production remained constant during leaf expansion, but, because young leaf area increased by tenfold, the investment in extrafloral nectar per leaf area significantly decreased. In addition, nectary area did not change during leaf expansion and therefore the relative size of the nectary significantly decreased during young leaf expansion. These results support the predictions of the optimal defense hypothesis and demonstrate that the youngest leaves have the highest investment in multiple defenses, most likely because they have the highest nitrogen content and are most susceptible to a diversity of herbivores. 相似文献
13.
Wesley Dáttilo Cecilia Díaz‐Castelazo Victor Rico‐Gray 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):405-414
Extrafloral nectar (EFN) is a predictable and renewable resource for many ant colonies, and different ant species compete strongly to obtain and monopolize this highly nutritious food resource. Despite the importance of competition in structuring patterns of ant–plant interactions, this biological mechanism has been largely ignored in studies involving ant–plant networks. In this study we investigate the role of ant dominance hierarchy in structuring an ecological network involving ants and EFN‐bearing plants in a tropical coastal environment in Mexico. We show that within a nested ant–plant network, ant species found in the central core of highly interacting species were competitively superior, showing massive recruitment and resource domination, compared with peripheral species with fewer interactions. Moreover, we also observed that both central and peripheral ant species have the ability to quickly find the food resource. However, after 2 h of observation, central ant species are more frequently collected on the food resource when compared with peripheral species. We hypothesize that the existence of a central core of competitive ant species may indicate that most plant species found within ant–plant networks could be better protected against herbivory by these dominant ant species. In short, our results highlight the importance of competition and monopolization in the resource use by ants in the maintenance of the nested pattern in ant–plant mutualistic networks. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 405–414. 相似文献
14.
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant–herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant‐mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)‐β‐caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant–herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense. 相似文献
15.
Amiel Vasl Bracha Y. Schindler Gyongyver J. Kadas Leon Blaustein 《Ecology and evolution》2019,9(20):11557-11568
Heterogeneity–diversity relationship (HDR) is commonly shown to be positive in accordance with classic niche processes. However, recent soil‐based studies have often found neutral and even negative HDRs. Some of the suggested reasons for this discrepancy include the lack of resemblance between manipulated substrate and natural settings, the treated areas not being large enough to contain species' root span, and finally limited‐sized plots may not sustain focal species’ populations over time. Vegetated green roofs are a growing phenomenon in many cities that could be an ideal testing ground for this problem. Recent studies have focused on the ability of these roofs to sustain stable and diverse plant communities and substrate heterogeneity that would increase niches on the roof has been proposed as a method to attain this goal. We constructed an experimental design using green roof experimental modules (4 m2) where we manipulated mineral and organic substrate component heterogeneity in different subplots (0.25 m2) within the experimental module while maintaining the total sum of mineral and organic components. A local annual plant community was seeded in the modules and monitored over three growing seasons. We found that plant diversity and biomass were not affected by experimentally created substrate heterogeneity. In addition, we found that different treatments, as well as specific subplot substrates, had an effect on plant community assemblages during the first year but not during the second and third years. Substrate heterogeneity levels were mostly unchanged over time. The inability to retain plant community composition over the years despite the maintenance of substrate differences supports the hypothesis that maintenance of diversity is constrained at these spatial scales by unfavorable dispersal and increased stochastic events as opposed to predictions of classic niche processes. 相似文献
16.
Although fire‐ and ant–plant interactions influence the community structure and dynamics of Neotropical savannas, no previous studies have considered their simultaneous effects on target host plants. We monitored the effect of ant exclusion for 3 years on leaf area loss to leaf chewing insects, thrips abundance, and reproductive output of the extrafloral nectary‐bearing shrub, Peixotoa tomentosa (Malpighiaceae). We predicted that the impact of ants on herbivores and plants would depend on the ant species, and that fire would reduce the effect of ants. We deliberately chose control plants that differed in their occupant ant species. Fire occurred in the second year of the study, allowing us to determine its effect on the benefit afforded by ants. Ants reduced leaf area loss and thrips abundance, and increased fruit and seed production in all 3 years. Some ant species were more effective than others, while plants with multiple ant species suffered higher leaf area loss than plants with a single ant species. In the year following the fire, leaf damage was greater than in the other years, regardless of the ant species, and the proportional effect of ants in reducing damage was less. Interactions affecting thrips abundance did not change following fire, nor was the benefit to the plant proportionally reduced. Overall, the identity of the ant species had a greater effect than did the occurrence of fire on the ant–herbivore–plant interaction: the identity of the ant species influenced leaf area loss, thrips numbers, and bud and seed production, while fire only modified the impact of ants on the amount of leaf area consumed by insect herbivores. 相似文献
17.
18.
Abstract Ants (Hymenoptera: Formicidae) consume a broad spectrum of liquid food sources including nectar and honeydew, which play a key role in their diet especially in tropical forests. This study compares carbohydrates and amino acids from a representative spectrum of liquid sources used by ants in the canopy and understorey of a tropical rainforest in northern Queensland, Australia. Eighteen floral nectars, 16 extrafloral nectars, two wound sap and four homopteran honeydew sources were analysed using high performance liquid chromatography. Wounds comprised flower abscission scars on Normanbya normanbyi L. H. Bailey and bitemarks on Cardwellia sublimis F. Muell. where ants were actively involved in wounding. Discriminant analysis was performed to model differences between food sources in sugar and amino acid concentration and composition. All characteristics varied significantly among plant species. Honeydew contained a broader spectrum of sugars (including melezitose, raffinose, melibiose, lactose and maltose) than nectar (sucrose, glucose, fructose), but certain extrafloral nectars had similar amino acid profiles and, like honeydew sources, were often monopolized by ants. Most common amino acids across the sources were proline, alanine and threonine among 17 α‐amino acids identified. Interspecific variability concealed characteristic differences in sugar and amino acid parameters between nectar, honeydew and wound sap across all plants, but these types differed significantly when found on the same plant. Among all sources studied, only a few flower nectars were naturally not consumed by ants and they were significantly less attended than sugar controls in feeding trials. These nectars did not differ in sugars and amino acids from ant‐attended flower nectars, suggesting the activity of repellents. Apart from these exceptions, variability in amino acids and carbohydrates is proposed to play a key role in ant preferences and nutrition. 相似文献
19.
20.
We present primer sequences for five polymorphic microsatellite loci in ants of the genus Crematogaster subgenus Decacrema that live in obligate symbiosis with host plants of the euphorb genus Macaranga. Microsatellite loci were isolated with a highly efficient method of enrichment. The number of alleles ranged from 10 to 18 for Crematogaster morphospecies 2, for which these markers were developed, with an observed heterozygosity ranging from 0.6578 to 0.9474. The markers were designed for the study of the population as well as of the social structure of colonies. 相似文献