首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Australia, dingoes (Canis lupus dingo) have been implicated in the decline and extinction of a number of vertebrate species. The lowland Wet Tropics of Queensland, Australia is a biologically rich area with many species of rainforest‐restricted vertebrates that could be threatened by dingoes; however, the ecological impacts of dingoes in this region are poorly understood. We determined the potential threat posed by dingoes to native vertebrates in the lowland Wet Tropics using dingo scat/stomach content and stable isotope analyses of hair from dingoes and potential prey species. Common mammals dominated dingo diets. We found no evidence of predation on threatened taxa or rainforest specialists within our study areas. The most significant prey species were northern brown bandicoots (Isoodon macrourus), canefield rats (Rattus sordidus), and agile wallabies (Macropus agilis). All are common species associated with relatively open grass/woodland habitats. Stable isotope analysis suggested that prey species sourced their nutrients primarily from open habitats and that prey choice, as identified by scat/stomach analysis alone, was a poor indicator of primary foraging habitats. In general, we find that prey use by dingoes in the lowland Wet Tropics does not pose a major threat to native and/or threatened fauna, including rainforest specialists. In fact, our results suggest that dingo predation on “pest” species may represent an important ecological service that outweighs potential biodiversity threats. A more targeted approach to managing wild canids is needed if the ecosystem services they provide in these contested landscapes are to be maintained, while simultaneously avoiding negative conservation or economic impacts.  相似文献   

2.
3.
Large carnivores can play a pivotal role in maintaining healthy, balanced ecosystems. By suppressing the abundances and hence impacts of herbivores and smaller predators, top predators can indirectly benefit the species consumed by herbivores and smaller predators. Restoring and maintaining the ecosystem services that large carnivores provide has been identified as a critical step required to sustain biodiversity and maintain functional, resilient ecosystems. Recent research has shown that Australia's largest terrestrial predator, the Dingo (Canis lupus dingo), has strong effects on ecosystems in arid Australia and that these effects are beneficial for the conservation of small mammals and vegetation. Similarly, there is evidence from south‐eastern Australia that dingoes suppress the abundance of macropods and red Fox (Vulpes vulpes). It is likely that dingoes in south‐eastern Australia also generate strong indirect effects on the prey of foxes and macropods, as has been observed in the more arid parts of the continent. These direct and indirect effects of dingoes have the potential to be harnessed as passive tools to assist biodiversity conservation through the maintenance of ecologically functional dingo populations. However, research is required to better understand dingoes' indirect effects on ecosystems and the development of dingo management strategies that allow for both the preservation of dingoes and protection of livestock.  相似文献   

4.
The diet of dingoes (Canis familiaris dingo) in the Australian Wet Tropics was examined by analyzing 383 dingo scats collected throughout the region for the presence of mammal prey remains. The scats yielded 29 native and 4 introduced mammal prey species from 14 families. The most important species in terms of percentage occurrence in the scats were Melomys cervinipes (22.2%), hoodon macrourus (17.0%), Perameles nasuta (12.5%), and Thylogale stigmatica (12.5%). The most important families were Muridae (37.1%), Peramelidae (29.5%), and Macropodidae (25.8%). Examination of small‐scale habitat preferences revealed species that preferentially use the forest edge ranked significantly higher in the diet than those that do not, and species that are terrestrial ranked higher in the diet than those that are arboreal. Relative abundance was also a significant factor in the ranked dietary occurrence of each species, with abundant species ranked significantly higher than those that are less abundant. These results suggest that dingoes in the Australian Wet Tropics are opportunistic predators of a wide variety of mammal species, with abundant terrestrial and forest edge‐dwelling taxa the most susceptible to predation.  相似文献   

5.
Habitat use by feral cats and dingoes was examined within a heterogeneous semi‐arid woodland site in central Australia over 2 years. Density estimates of feral cats based on tracks were higher in mulga habitat than in open habitat. Isodar analysis implied that this pattern of habitat use by feral cats was consistent with the consumer‐resource model of density‐dependent habitat selection, which is an ideal free solution. The reason why mulga supported higher densities of feral cats was unclear. Foraging success of feral cats may be higher in the mulga because the stalk and ambush hunting tactics typically employed by felids are well suited to dense cover. Mulga may also have offered feral cats more protection from dingo predation. Dingo activity was distributed uniformly across habitats. The dingo isodar was statistically non‐significant, suggesting that habitat selection by dingoes was independent of density.  相似文献   

6.

Background

Indo-Pacific high island streams experience extreme hydrological variation, and are characterised by freshwater fish species with an amphidromous life history. Amphidromy is a likely adaptation for colonisation of island streams following stochastic events that lead to local extirpation. In the Wet Tropics of north-eastern Australia, steep coastal mountain streams share similar physical characteristics to island systems. These streams are poorly surveyed, but may provide suitable habitat for amphidromous species. However, due to their ephemeral nature, common non-diadromous freshwater species of continental Australia are unlikely to persist. Consequently, we hypothesise that coastal Wet Tropics streams are faunally more similar, to distant Pacific island communities, than to nearby faunas of large continental rivers.

Methods/Principal Findings

Surveys of coastal Wet Tropics streams recorded 26 species, 10 of which are first records for Australia, with three species undescribed. This fish community is unique in an Australian context in that it contains mostly amphidromous species, including sicydiine gobies of the genera Sicyopterus, Sicyopus, Smilosicyopus and Stiphodon. Species presence/absence data of coastal Wet Tropics streams were compared to both Wet Tropics river networks and Pacific island faunas. ANOSIM indicated the fish fauna of north-eastern Australian coastal streams were more similar to distant Pacific islands (R = 0.76), than to nearby continental rivers (R = 0.98).

Main Conclusions/Significance

Coastal Wet Tropics streams are faunally more similar to distant Pacific islands (79% of species shared), than to nearby continental fauna due to two factors. First, coastal Wet Tropics streams lack many non-diadromous freshwater fish which are common in nearby large rivers. Second, many amphidromous species found in coastal Wet Tropics streams and Indo-Pacific islands remain absent from large rivers of the Wet Tropics. The evolutionary and conservation significance of this newly discovered Australian fauna requires clarification in the context of the wider amphidromous fish community of the Pacific.  相似文献   

7.
In arid environments, ecological refuges are often conceptualised as places where animal species can persist through drought owing to the localised persistence of moisture and nutrients. The mesopredator release hypothesis (MRH) predicts that reduced abundance of top-order predators results in an increase in the abundance of smaller predators (mesopredators) and consequently has detrimental impacts on the prey of the smaller predators. Thus according to the MRH, the existence of larger predators may provide prey with refuge from predation. In this study, we investigated how the abundance of an endangered rodent Notomys fuscus is affected by Australia's largest predator, the dingo Canis lupus dingo , introduced mesopredators, introduced herbivores, kangaroos and rainfall. Our surveys showed that N. fuscus was more abundant where dingoes occurred. Generalised linear modelling showed that N. fuscus abundance was associated positively with dingo activity and long-term annual rainfall and negatively with red fox Vulpes vulpes activity. Our results were consistent with the hypothesis that areas with higher rainfall and dingoes provide N. fuscus with refuge from drought and predation by invasive red foxes, respectively. Top-order predators, such as dingoes, could have an important functional role in broad-scale biodiversity conservation programmes by reducing the impacts of mesopredators.  相似文献   

8.
Recent analyses of geographical variation in cats’ diet across Australia have been used to highlight rabbit control as a conservation risk, on the basis that prey‐switching by cats following rabbit control is likely to threaten Australian fauna. There is no direct evidence to support that proposition. However, there is direct evidence of repeated prey‐switching due to seasonal fluctuations in uncontrolled rabbit populations, of long‐term suppression of rabbit numbers by effective rabbit control, and that reduced rabbit abundance leads to reduced cat abundance, reduced predation of native fauna and recovery of threatened prey populations. Furthermore, rabbits are a known threat to many Australian native plants and rabbit control has proven benefits for their recovery, thereby offering long‐term benefits for dependent fauna and broader ecosystem function. On the balance of evidence, rabbit control should be encouraged in Australia wherever possible, as a national conservation priority.  相似文献   

9.
Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes'' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes) may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.  相似文献   

10.
Lethal control of wild dogs – that is Dingo (Canis lupus dingo) and Dingo/Dog (Canis lupus familiaris) hybrids – to reduce livestock predation in Australian rangelands is claimed to cause continental‐scale impacts on biodiversity. Although top predator populations may recover numerically after baiting, they are predicted to be functionally different and incapable of fulfilling critical ecological roles. This study reports the impact of baiting programmes on wild dog abundance, age structures and the prey of wild dogs during large‐scale manipulative experiments. Wild dog relative abundance almost always decreased after baiting, but reductions were variable and short‐lived unless the prior baiting programme was particularly effective or there were follow‐up baiting programmes within a few months. However, age structures of wild dogs in baited and nil‐treatment areas were demonstrably different, and prey populations did diverge relative to nil‐treatment areas. Re‐analysed observations of wild dogs preying on kangaroos from a separate study show that successful chases that result in attacks of kangaroos by wild dogs occurred when mean wild dog ages were higher and mean group size was larger. It is likely that the impact of lethal control on wild dog numbers, group sizes and age structures compromise their ability to handle large difficult‐to‐catch prey. Under certain circumstances, these changes sometimes lead to increased calf loss (Bos indicus/B. taurus genotypes) and kangaroo numbers. Rangeland beef producers could consider controlling wild dogs in high‐risk periods when predation is more likely and avoid baiting at other times.  相似文献   

11.
Land‐use change has resulted in rangeland loss and degradation globally. These changes include conversion of native grasslands for row‐crop agriculture as well as degradation of remaining rangeland due to fragmentation and changing disturbance regimes. Understanding how these and other factors influence wildlife use of rangelands is important for conservation and management of wildlife populations. We investigated bat habitat associations in a working rangeland in southeastern North Dakota. We used Petterson d500x acoustic detectors to systematically sample bat activity across the study area on a 1‐km point grid. We identified calls using Sonobat autoclassification software. We detected five species using this working rangeland, which included Lasionycteris noctivagans (2,722 detections), Lasiurus cinereus (2,055 detections), Eptesicus fuscus (749 detections), Lasiurus borealis (62 detections), and Myotis lucifugus (1 detection). We developed generalized linear mixed‐effects models for the four most frequently detected species based on their ecology. The activity of three bat species increased with higher tree cover. While the scale of selection varied between the four species, all three investigated scales were explanatory for at least one bat species. The broad importance of trees to bats in rangelands may put their conservation needs at odds with those of obligate grassland species. Focusing rangeland bat conservation on areas that were treed prior to European settlement, such as riparian forests, can provide important areas for bat conservation while minimizing negative impacts on grassland species.  相似文献   

12.
The expansion (or encroachment) of shrubs in forests and woodlands is generally considered a serious threat to biodiversity. The effects of shrub expansion on forest fauna, however, are poorly understood and likely to depend on the availability of key resources in shrub‐encroached forest. Coranderrk Bushland, like many conservation reserves in south‐eastern Australia, is considered threatened by the spread of an indigenous shrub. We investigated the associations between cover of Yarra burgan (Kunzea leptospermoides (Myrtaceae)), vegetation structure and the occurrence of terrestrial native mammals within the reserve, basing our predictions on prior knowledge of burgan growth habits and fauna habitat preferences. We quantified burgan cover and other potentially important habitat attributes using structure surveys, and used motion‐sensing cameras to detect terrestrial mammals. Dense burgan cover was associated with less grass, a sparser understorey, and more cryptogams, dead trees and coarse woody debris. However, there was no evidence that these changes negatively affected native mammals: burgan cover had little influence on the occurrence of any species except swamp wallabies (Wallabia bicolor), which occurred in all areas of the reserve but shifted from sites with high burgan cover during the day to sites with low cover at night. Our findings contrast with those from grassland shrub‐expansion studies, where fauna generally show strong responses to shrub cover. The effects of shrub expansion on forest fauna may be mitigated by the greater pre‐existing structural diversity in forests or the longer time required for structural changes to be fully realized. The large quantities of dead wood in areas with high shrub cover may also provide compensatory resources for small mammals, while the proximity to un‐encroached areas may enable large herbivores to move between dense shelter and forage. Shrub‐encroached forests clearly provide resources for some native fauna, and management strategies need to consider the potential impacts of shrub removal on these taxa.  相似文献   

13.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

14.
Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species‐level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current‐day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna.  相似文献   

15.
Striped hyenas (Hyaena hyaena) are extremely rare in Nepal, and only a few people have studied them in their natural forest and grassland habitat. Their rarity is due to anthropogenic pressures such as hunting, habitat modification, being killed on roads, and depletion of their natural prey. Here, we studied the feeding ecology of hyenas in lowland, Nepal. We employed an opportunistic sampling to collect hyena scats in a range of habitats and the line transect sampling to identify the prey of the hyena in the study site. We collected 68 hyena scats between 2015 and 2018. Most of the hyena scat (39.7%) was found in the Churia Hill forest followed by riverbed (26.4%), mixed forest (14.7%), Sal (Shorea robusta)‐dominated forest (11.7%), and grassland area (7.3%). We found eleven mammalian prey species, plants, and some unidentified items in the hyena scats. The frequency of occurrence and relative biomass of the medium‐sized wild boar (Sus scrofa) were higher than other smaller prey species such as hare (Lepus nigricollis) and rhesus macaque (Macaca mulatta). Similarly, the proportion of large prey species such as nilgai (Boselaphus tragocamelus) in the hyena diet was lower compared with wild boar, hares, and rhesus macaques indicating medium‐sized wild boar is the most preferred prey species. Livestock contributed 17.3% of the total dietary biomass. Domesticated species such as goats, sheep, cows, and even dogs were found in the diet of hyenas. Predation of livestock by hyenas could cause conflict, especially if this ongoing issue continues in the future. Rather, more conservation effort is required in lowland areas of Nepal to protect the hyenas' natural prey species, particularly in wildlife habitats to reduce the lure of taking domestic livestock. Similarly, conservation education at the local level and active involvement of government authorities in the conservation of this species might be helpful to mitigate human–hyena conflict in the human‐dominated landscape.  相似文献   

16.
Urban expansion is a major cause of land use change and presents a significant threat to biodiversity worldwide. Agricultural land is often acquired by local councils and developers to expand urban growth boundaries and establish new housing estates. However, many agricultural landscapes support high biodiversity values, especially farmlands that feature mosaics of native vegetation and keystone habitat such as hollow‐bearing trees. In south‐eastern Australia, many arboreal marsupials including the threatened Squirrel Glider (Petaurus norfolcensis) have populations within peri‐urban zones of expanding rural cities. A key challenge to planners, developers and conservation organisations is the need to maintain habitat for locally rare and threatened species as land undergoes changes in management. Critical to the sustainable development of peri‐urban landscapes is a thorough understanding of the distribution, habitat requirements and resources available to maintain and improve habitat for species dependent on limited resources such as tree cavities. In this management report, we present background information on an integrated research programme designed to evaluate potential impacts of urban development on fauna in the Albury Local Government Area, NSW. We mapped hollow‐bearing trees, erected nest boxes and monitored arboreal marsupials. Information presented in this report provides a blueprint for monitoring arboreal marsupials, including threatened species in other developing regions, and will assist the Albury‐Wodonga local governments in future planning of sustainable living environments.  相似文献   

17.
1. Biological invasions are considered a major threat to biodiversity. Most research has focused on the distribution, biology and impacts of non‐native species on native fauna and flora. However, few studies have explored their role as prey for native predators of conservation concern. 2. To assess the incidence and intensity of predation by the Eurasian otter Lutra lutra on established non‐native fish species, data were collated from the published literature. To be selected, studies had to cover at least 1 year, analyse more than 100 spraints and report the study period and percentage relative frequency (%RF) of all prey fish species. 3. To permit reliable, time‐related comparisons with %RF of non‐native fishes in otter diet, we also reviewed available information about both the distribution of non‐native fishes and history of their introductions to European countries, revealing a decrease with longitude in the number of naturalised non‐native fishes taken (ranging between 5 and 34) and their percentage in each fish assemblage. 4. Our selective criteria were met by 30 dietary studies from 44 study areas in 15 European countries during 1970–2010. The extent to which otters rely on non‐native fishes was almost negligible (mean %RF = 4.8), with the number of non‐native fishes preyed upon by otters decreasing with both latitude and longitude. 5. The %RF of non‐native fish in the diet increased slightly with time, with otters preying significantly more on non‐native fish in study areas where alterations of the fish assemblage had been highlighted in the reference papers. No relationship was found between otter diet breadth and the occurrence of non‐native fishes in their diet. 6. The current role of non‐native species in otter diet suggests that effective otter conservation management plans should focus on the maintenance and/or enhancement of native fish assemblages.  相似文献   

18.
Aim To examine potential impacts of climatic change on bird species richness of the fynbos and grassland biomes, especially on species of conservation concern, and to consider implications for biodiversity conservation strategy. Location Southern Africa, defined for this study as South Africa, Lesotho and Swaziland. Methods Climate response surfaces were fitted to model relationships between recorded distributions and reporting rates of 94 species and current bioclimatic variables. These models were used to project species’ potential ranges and reporting rates for future climatic scenarios derived from three general circulation models for 30‐year periods centred on 2025, 2055 and 2085. Results were summarized for species associated with each biome and examined in detail for 12 species of conservation concern. Results Species richness of fynbos and grassland bird assemblages will potentially decrease by an average of 30–40% by 2085 as a result of projected climatic changes. The areas of greatest richness are projected to decrease in extent and to shift in both cases. Attainment of projected shifts is likely to be limited by extent of untransformed habitat. Most species of conservation concern are projected to decrease in range extent, some by > 60%, and to decrease in reporting rate even where they persist, impacts upon their populations thus being greater than might be inferred from decreases in range extent alone. Two species may no longer have any areas of suitable climatic space by 2055; both already appear to be declining rapidly. Main conclusions Species losses are likely to be widespread with most species projected to decrease in range extent. Loss of key species, such as pollinators, may have far‐reaching implications for ecosystem function and composition. Conservation strategies, and identification of species of conservation concern, need to be informed by such results, notwithstanding the many uncertainties, because the certainties of climatic change make it essential that likely impacts not to be ignored.  相似文献   

19.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

20.
The African elephant, Loxodonta africana, is under threat from habitat loss, poaching and human–elephant conflict. To mitigate for impact of habitat loss and reduce conflict, connectivity between elephant habitats can be improved through the protection of corridor areas. This study looks at elephant distribution and movement patterns within the Kasigau Wildlife Corridor (KWC) within the Tsavo Conservation Area in South‐east Kenya. Elephant presence data were obtained from observations by rangers during routine patrols across KWC, and were analysed in MaxEnt. The environmental factors predicting elephant distribution and density were tested, as well as the relationship between elephant maximum entropy and the presence and abundance of other wildlife. Seasonal variations in temperature and precipitation, plus presence of waterholes were found to play significant roles in elephant distribution across KWC. Higher elephant densities were not found to correlate with lower densities of other wildlife species; indeed, during the dry seasons, elephant presence was associated with greater wild herbivore densities. Besides illustrating the importance of the KWC for elephant conservation in the Tsavo ecosystem, both as a key corridor and habitat, this study also hopes to highlight the untapped utility of routine ranger patrol data, and encourage the use of such presence‐only data for deducing important knowledge for conservation of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号