首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonodynamic therapy (SDT) with low-intensity ultrasound combined with a sonosensitizer may be a promising approach to cancer therapy. Use of ultrasound has the advantage of being noninvasive, with deep-penetration properties, and convenient because of the low or no sensitivity of sonosensitizers to light. In this study, SDT with a novel sonosensitizer (a porphyrin derivative) was evaluated in vitro and in vivo. Ultrasound irradiation with a sonosensitizer elicited potent sonotoxicity in vitro without the danger of phototoxicity. The sonotoxic effect was mediated by reactive oxygen species (ROS) and was reduced by ROS scavengers. Cell membrane lipid peroxidation increased significantly just after ultrasound irradiation with a sonosensitizer, but there was no increase in apoptosis. In an in vivo mouse xenograft model, SDT with a sonosensitizer markedly inhibited tumor cell growth. The skin hypersensitivity after light exposure was not observed in a sonosensitizer-treatment group, consistent with the in vitro findings. These results suggest that ROS generated by SDT with a sensitizer can damage tumor cells, resulting in necrosis and prevention of tumor growth. This noninvasive treatment with no adverse effects such as skin sensitivity is therefore promising for therapy of cancers located deep within patients.  相似文献   

2.
Low frequency ultrasound in the 20 to 60 kHz range is a novel physical modality by which to induce selective cell lysis and death in neoplastic cells. In addition, this method can be used in combination with specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells, an approach referred to as sonodynamic therapy (SDT). The methodology for generating and applying low frequency ultrasound in a preclinical in vitro setting is presented to demonstrate that reproducible cell destruction can be attained in order to examine and compare the effects of sonication on neoplastic and normal cells. This offers a means by which to reliably sonicate neoplastic cells at a level of consistency required for preclinical therapeutic assessment. In addition, the effects of cholesterol-depleting and cytoskeletal-directed agents on potentiating ultrasonic sensitivity in neoplastic cells are discussed in order to elaborate on mechanisms of action conducive to sonochemotherapeutic approaches.  相似文献   

3.
4.
5.

Objective

The aim of the present study was to examine the apoptosis-promoting effects and mechanisms of hematoporphyrin monomethyl ether (HMME)-sonodynamic therapy (SDT) on endometrial cancer cells in vitro.

Methods

Endometrial cancer cell samples were divided into four groups: 1) untreated control group, 2) HMME group, 3) pure ultrasound group, and 4) HMME combined with ultrasound, i.e. SDT group. CCK-8 method was utilized to assess the inhibiting effect of SDT on the proliferation of endometrial cancer cells. Optical microscope and field emission transmission electron microscopy were used to characterize the morphology changes of the cancer cells induced by the treatments. Apoptosis rate, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were examined by flow cytometer. Fluorescence intensity measured by laser scanning confocal microscopy was used to explore the variation of intracellular calcium ion (Ca2+) concentration. Apoptosis-related proteins involved in both intrinsic and extrinsic apoptosis signallings were analyzed by western blot.

Results

SDT can effectively induce the apoptosis of endometrial cancer cells. Compared with ultrasound which is known as an effective anti-tumor method, SDT leads to a significant improvement on suppression of cell viability and induction of apoptosis, together with more remarkable modifications on the morphology and substructure in both ultrasound sensitive and resistant endometrial cancer cells. Further studies reveals that SDT promotes ROS production, induces loss of MMP and increases intracellular Ca2+ concentration more efficiently than HMME or ultrasound alone. SDT groups also show a rather high expression of apoptosis-promoting proteins, including Bax, Fas and Fas-L, and a significant low expression of apoptosis-suspending proteins including Bcl-2 and Survivin. Meanwhile, both cleaved caspse-3 and caspase-8 are dramatically enhanced in SDT groups. Multiple pathways has been proposed in the process, including the intrinsic activation by excessive ROS and overloaded Ca2+, silencing survivin gene, and the extrinsic pathway mediated by the death receptor.

Conclusion

Given its considerable effectivity in both ultrasound sensitive and resistant cells, SDT may therefore be a promising therapeutic method for treating endometrial cancers.  相似文献   

6.
目的:探讨自噬在血卟啉单甲醚(Hematoporphyrin monomethyl ether,HMME)介导的声动力疗法(Sonodynamic therapy,SDT)抑制C6胶质瘤细胞增殖中的作用。方法:选取对数期生长的C6胶质瘤细胞并随机分为四组:对照组(未予处理)、超声组(单独超声照射)、HMME组(单独加入HMME)、SDT组(超声照射+HMME)。透射电镜观察SDT处理的C6胶质瘤细胞中自噬体数量的改变。应用qRT-PCR和免疫印迹分析SDT处理对C6胶质瘤细胞中的LC3、Beclin1、Bcl-2 m RNA及蛋白表达水平的影响。MTT检测C6胶质瘤细胞的活力变化。结果:透射电子显微镜显示SDT组自噬体数量较对照组明显增多。SDT组C6胶质瘤细胞中微管相关蛋白1轻链3 (Microtubule associated protein 1 light chain 3, LC3)、Beclin1 m RNA和蛋白水平高于对照组,B细胞淋巴瘤-2(B cell lymphoma-2, Bcl-2) m RNA和蛋白水平低于对照组。与对照组相比,SDT组C6胶质瘤细胞存活率从0 h至6 h逐渐下降,从12 h至72 h逐渐升高。3-甲基腺嘌呤(3-Methyladenine,3-MA)+SDT、氯喹(Chloroquine,CQ)+SDT处理后C6胶质瘤细胞存活率较SDT组明显降低。结论:SDT可能通过诱导自噬抑制C6胶质瘤细胞增殖。  相似文献   

7.
The sibship disequilibrium test (SDT) is designed to detect both linkage in the presence of association and association in the presence of linkage (linkage disequilibrium). The test does not require parental data but requires discordant sibships with at least one affected and one unaffected sibling. The SDT has many desirable properties: it uses all the siblings in the sibship; it remains valid if there are misclassifications of the affectation status; it does not detect spurious associations due to population stratification; asymptotically it has a chi2 distribution under the null hypothesis; and exact P values can be easily computed for a biallelic marker. We show how to extend the SDT to markers with multiple alleles and how to combine families with parents and data from discordant sibships. We discuss the power of the test by presenting sample-size calculations involving a complex disease model, and we present formulas for the asymptotic relative efficiency (which is approximately the ratio of sample sizes) between SDT and the transmission/disequilibrium test (TDT) for special family structures. For sib pairs, we compare the SDT to a test proposed both by Curtis and, independently, by Spielman and Ewens. We show that, for discordant sib pairs, the SDT has good power for testing linkage disequilibrium relative both to Curtis''s tests and to the TDT using trios comprising an affected sib and its parents. With additional sibs, we show that the SDT can be more powerful than the TDT for testing linkage disequilibrium, especially for disease prevalence >.3.  相似文献   

8.
Objectives: To evaluate the anti-cancer effect of sonodynamic therapy combined with microbubbles both in vitro and in vivo.Methods: Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and guava viacount assays. Annexin V-FITC/PI staining was adopted to analyze cell apoptosis rate. FD500 uptake assay was performed to assess cell membrane permeability changes. Tumor weight, mice weight and the visual image of tumor size were used to reflect the anti-tumor effect of this combined method. Histological change of tumor tissue after different treatments was measured through hematoxylin and eosin (H&E) staining.Results: Microbubbles can significantly enhance the cytotoxicity and necrocytosis rate induced by SDT treatment. Increased cell membrane permeability and more uptake of DVDMS were founded in SDT combined with microbubbles group. For in vivo experiments, SDT with microbubbles can significantly reduce tumor weight and size with pimping difference of mice weight compare with other treatment groups. In addition, microbubbles notably improved tumor tissue destruction caused by ultrasound and SDT treatment.Conclusion: The results suggest that microbubbles can markedly improve the anti-cancer effect of DVDMS mediate sonodynamic therapy both in vitro and in vivo.  相似文献   

9.
BackgroundSono-photodynamic therapy (SPDT) which is the combination of photodynamic therapy (PDT) and sonodynamic therapy (SDT), could exert much better anti-cancer effects than monotherapy. The combination of chemotherapy and PDT or SDT has shown great potential for cancer treatment. However, the combination of SPDT and chemotherapy for cancer treatment is rarely explored.PurposeWe utilized a natural hydrophobic anti-cancer drug oleanolic acid (OA) and a photosensitizer chlorin e6 (Ce6) through self-assembly technology to form a carrier-free nanosensitizer OC for combined chemotherapy and SPDT for cancer treatment. No studies involving using carrier-free nanomedicine for combined chemotherapy/SPDT have been reported yet.Study designAfter fully characterization of OC, the in vitro and in vivo anti-cancer activities of OC were investigated and the mechanisms of the synergistic therapeutic effects were studied.MethodsOC were synthesized through self-assembly technology and characterized by dynamic light scattering (DLS) and an atomic force microscope (AFM). Confocal microscope was used to investigate the intracellular uptake efficiency and the penetration ability of OC. The cell viability of PC9 and 4T1 cells treated with OC under laser and ultrasound (US) irradiation was determined by MTT assay. Furthermore, flow cytometry was performed to detect the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), cell apoptosis and cell cycle arrest. Finally, the anti-tumor therapeutic efficacy of OC was investigated in orthotopic 4T1 breast tumor-bearing mouse model.ResultsOC showed an average particle size of around 100 nm with excellent light stability. OC increased more than 23 times accumulation of Ce6 in cancer cells and had strong tumor penetration ability in three-dimensional (3D) multicellular tumor spheroids (MCTSs). Compared with other therapeutic options, OC showed obvious synergistic inhibitory effects under light and US irradiation in PC9 and 4T1 cells with a significant decrease in IC50 values. Mechanism studies showed that OC could generate high ROS, induce MMP loss, and cause apoptosis and cell cycle arrest. In vivo studies also approved the synergistic therapeutic effects of OC in 4T1 mouse models.ConclusionSelf-assembled carrier-free nanosensitizer OC could be a promising therapeutic agent for synergistic chemo/sono-photodynamic therapy for cancer treatment.  相似文献   

10.
Hematoporphyrin monomethyl ether (HMME) has been effectively used to treat solid tumors of some types. However, its application in nasopharyngeal carcinoma has not been studied yet. In this paper, the detailed sonodynamic effects of HMME‐SDT (sonodynamic therapy) on CNE‐2 cells including cell growth inhibition, apoptosis induction, and membrane toxicity were investigated. It was found that HMME alone had less cytotoxicity whereas HMME‐SDT could suppress the cell proliferation in a dose‐dependent manner as detected by MTT assay. The annexin V‐based flow cytometric data indicated that upon SDT, different concentrations of HMME induce distinct types of cell death, apoptosis by low concentration (60 µg/ml) of HMME and necrosis by higher concentration (120 µg/ml). The immunofluorescence of cytoskeleton and nuclei morphology showed that upon HMME‐SDT, the cells became rounding and the cytoskeletal network disappeared, and, the nuclei represented a total fragmented morphology of nuclear bodies. These alternations showed the apoptosis induction by HMME‐SDT. Further AFM study showed that the cell membrane structure and cytoskeleton networks were destroyed, and, the Young's modulus, tip‐cell‐surface adhesion force decreased to 0.22 ± 0.11 Mpa, 35.4 ± 12.8 pN of cells with 120 µg/ml HMME‐SDT from 0.48 ± 0.21 Mpa, 69.6 ± 22.3 pN of native cells, respectively. These membrane changes caused the collapse of mitochondrial transmembrane potential and disturbance of intracellular calcium homeostasis, which was consistent with the results detected by flow cytometry. Therefore, membrane toxicity and cytoskeleton disrupture induced by HMME‐SDT maybe important factors to induce cell apoptosis, and, the disturbance of mitochondrial transmembrane potential and calcium channels might be the apoptosis mechanisms. J. Cell. Biochem. 112: 169–178, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
目的:探讨血卟啉单甲醚(hematoporphyrin monomethyl ether,HMME)介导的声动力疗法(sonodynamic therapy,SDT)对牙龈卟啉单胞菌(Porphyromonas gingivalis,Pg)生物膜中脂质过氧化物丙二醛(malondialdehyde,MDA)含量的影响。方法:羟基磷灰石片培养Pg生物膜厌氧培养3天,将生物膜随机分为4组(对照组、HMME组、超声组、SDT组),分别与无菌生理盐水或HMME进行避光孵育,然后进行声动力处理。采用平板计数法计算细菌存活率,MDA含量使用MDA检测试剂盒在可见光分光光度计下进行检测。结果:当超声强度为3 W/cm~2,超声时间为5 min时,SDT组的生物膜细菌存活率仅为40%,与对照组相比显著降低(P0.05),超声组细菌存活率为62%,与对照组相比亦显著降低(P0.05)。相同超声参数下,SDT组Pg生物膜中MDA含量最高,达17.3±1.2 nmol/mL(P0.05),超声组生物膜中MDA含量为7±0.8 nmol/mL,与对照组相比差异并无统计学意义(P0.05)。结论:HMME介导的SDT对Pg生物膜有一定杀伤效果,并且在杀伤过程中,可引发脂质过氧化反应,导致MDA释放。  相似文献   

12.
Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy.  相似文献   

13.
The Spontaneously Diabetic Torii (SDT) fatty rat, established by introducing the fa allele of the Zucker fatty rat into the SDT rat genome, is a new model of obese type 2 diabetes. The SDT-fa/fa (SDT fatty) rat shows overt obesity, and hyperglycemia and hyperlipidemia are observed at a young age as compared with the SDT-+/+ (SDT normal) rat. However, the features of the diabetic complications in the SDT fatty rat have not been reported. In the present study, the incidence and the progression of diabetic complications in the SDT fatty rat were examined, and compared with those of the SDT normal rat. Renal function parameters, such as blood urea nitrogen, urine volume and urinary protein, increased from 4 weeks of age in the SDT fatty rat, and pathological findings in the renal tubule were observed from 8 weeks. Furthermore, cataract was observed in the SDT fatty rat from 8 weeks of age, and prolongation of peak latencies on electroretinograms was observed at 16 and 24 weeks of age. On the other hand, in the SDT normal rat, renal or ocular changes were observed from 24 weeks of age. With early incidence of diabetes mellitus, diabetes-associated complications in the SDT fatty rat were seen at younger ages than those in the SDT normal rat. In conclusion, the SDT fatty rat is expected to be a useful model for the analysis of diabetic complications and the evaluation of drugs related to metabolic diseases.  相似文献   

14.
The spontaneously diabetic Torii (SDT) rat has recently been established as an animal model of non-obese type 2 diabetes, in which ocular complications severe occur. However, the function and morphological features of the diabetic renal lesions in SDT rats have not been reported in detail. Therefore, we evaluated changes over time in renal lesions in SDT rats. In addition, SDT rats were treated with insulin to observe whether these renal complications are caused by hyperglycemia. Renal functional parameters and renal lesions were monitored in SDT rats from 8 to 68 weeks of age. Sprague-Dawley (SD) rats of similar age were used as control animals. In the insulin-treated group of SDT rats, insulin pellets were implanted at 24 weeks of age to compare the development of renal lesions. The SDT rats began to develop hyperglycemia at 20 weeks of age. In the histopathological examination of the kidney, glycogen deposition of the renal tubular epithelium and renal tubular dilation were observed from 24 weeks of age in the untreated SDT rats, and the changes in the renal tubules markedly progressed with aging. Moreover, thickening of the glomerular basement membrane was observed from 32 weeks of age. At 50 weeks of age, the glomeruli showed increase of mesangial matrix, with predominantly diffuse lesions showing by 68 weeks of age. The mesangial proliferation gradually progressed. In the SD rats, no renal lesions were present at 50 and 68 weeks of age. SDT rats with insulin treatment remained normoglycemic throughout observation and their renal functional parameters were normal. Glycemic control in SDT rats prevented the development of renal lesions. The features of SDT rats indicate their usefulness as an animal model for investigating diabetic nephropathy.  相似文献   

15.
ABSTRACT Short-distance translocation (SDT) is commonly used to mitigate snake-human interactions, yet little is known about its effectiveness or its effects on behavior and welfare of snakes. Between April 2004 and October 2005, we evaluated SDT as a conservation and management tool by investigating how 500-m SDT affected spatial ecology, body condition, and behavior of western rattlesnakes (Crotalus oreganus) surgically implanted with radiotransmitters in a field study near Osoyoos, British Columbia, Canada. Of 14 rattlesnakes subjected to SDT, 12 (85.7%) returned on ≥1 occasion (range 1–7 times) to the general area they were removed from. Rattlesnakes that underwent SDT showed an increase in total distance moved over an active season compared to non-translocated snakes, but there was no evidence to suggest SDT had an effect on activity range size. There was no evidence to suggest SDT affected body condition, behavior, or mortality rates. Short-distance translocation to high-quality undisturbed habitats was unsuccessful as a long-term solution to snake-human conflict because most translocated snakes returned to conflict areas within a short time (x̄x = 19.9 ± 8.7 days). However, SDT may be an effective short-term tool to manage snake-human conflict in areas where human presence is seasonal or short-lived if careful attention is paid to species-specific biological needs, habitat quality at the release site, and the location of the release site in relation to conflict areas.  相似文献   

16.
The Spontaneously Diabetic Torii (SDT) rat has recently been established as a new rat model of nonobese type 2 diabetes. In this study, we characterized diabetic features in SDT rats, and performed quantitative trait locus (QTL) analysis for glucose intolerance using 319 male (BNxSDT)xSDT backcrosses. Male SDT rats exhibited glucose intolerance at 20 weeks, and spontaneously developed diabetes with the incidence of 100% at 38 weeks, and glucose intolerance is well associated with the development of diabetes. The QTL analysis identified three highly significant QTLs (Gisdt1, Gisdt2, and Gisdt3) for glucose intolerance on rat chromosomes 1, 2, and X, respectively. The SDT allele for these QTLs significantly exacerbated glucose intolerance. Furthermore, synergistic interactions among these QTLs were detected. These findings indicate that diabetic features in SDT rats are inherited as polygenic traits and that SDT rats would provide insights into genetics of human type 2 diabetes.  相似文献   

17.
Breast cancer rises as the most commonly diagnosed cancer in 2020. Among women, breast cancer ranks first in both cancer incidence rate and mortality. Treatment resistance developed from the current clinical therapies limits the efficacy of therapeutic outcomes, thus new treatment approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a type of immunotherapy developed from adoptive T cell transfer, which typically uses patients'' own immune cells to combat cancer. CAR-T cells are armed with specific antibodies to recognize antigens in self-tumor cells thus eliciting cytotoxic effects. In recent years, CAR-T cell therapy has achieved remarkable successes in treating hematologic malignancies; however, the therapeutic effects in solid tumors are not up to expectations including breast cancer. This review aims to discuss the development of CAR-T cell therapy in breast cancer from preclinical studies to ongoing clinical trials. Specifically, we summarize tumor-associated antigens in breast cancer, ongoing clinical trials, obstacles interfering with the therapeutic effects of CAR-T cell therapy, and discuss potential strategies to improve treatment efficacy. Overall, we hope our review provides a landscape view of recent progress for CAR-T cell therapy in breast cancer and ignites interest for further research directions.  相似文献   

18.
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.  相似文献   

19.
This paper reviews some applications of Signal Detection Theory (SDT) to the quantitative analysis of non-human animal discrimination. The basic detection model is briefly outlined and the separation of sensitivity and bias is illustrated. Several other applications and ideas are reviewed, including the rating method, some implications of signal and criterion variance, and the measurement of 'guesses' not encompassed by standard SDT. The conceptual framework and analytic tools of SDT help to clarify processes underlying stimulus control and provide direction to more complete process models.  相似文献   

20.
The spontaneously diabetic torii (SDT) fatty rat is a new model of type 2 diabetes showing overt obesity, hyperglycemia and hyperlipidemia. With early onset of diabetes mellitus, diabetic microvascular complications, including nephropathy, peripheral neuropathy and retinopathy, are observed at young ages. In the present study, blood glucose levels of female SDT fatty rats were controlled with phlorizin, a non-selective SGLT inhibitor, to examine whether and how these complications are caused by hyperglycemia. Phlorizin treatment adequately controlled plasma glucose levels during the experiment. At 29 weeks of age, urinary albumin excretion considerably increased in SDT fatty rats. Glomerulosclerosis and tubular pathological findings also indicate diabetic nephropathy. These renal parameters tended to decrease with phlorizin; however, effects were partial. Sciatic nerve conduction velocities were significantly delayed in SDT fatty rats compared with Sprague-Dawley (SD) rats. Intraepidermal nerve fiber density, an indicator of subclinical small nerve fiber neuropathy, significantly decreased in SDT fatty rats. Retinal dysfunction (prolongation of peak latency for oscillatory potential in electroretinograms) and histopathological eye abnormalities, including retinal folding and mature cataracts were also observed. Both nerve and eye disorders were prevented with phlorizin. These findings indicate that severe hyperglycemia mainly causes diabetic complications in SDT fatty rats. However, other factors, such as hyperlipidemia and hypertension, may affect diabetic nephropathy. These characteristics of diabetic complications will become helpful in evaluating new drugs for diabetic complications using SDT fatty rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号