首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to frequent fire, low nutrient availability, and prolonged drought, tropical savanna is a stressful environment for the survival and growth of woody plant seedlings. To understand why forest species do not succeed in this environment while savanna species are able to persist, the effects of fire and woody cover on seedlings of these two functional groups were investigated in the Brazilian Cerrado. Seedlings were established in experimental plots under three densities of woody cover, in sites protected from fire and sites to be subjected to fire. There was a clear difference in the ability of savanna and forest species to survive fire. None of the three forest species were able to survive fire during the first two years of life, whereas eight of the nine savanna species were able to resprout following fire. The small seed size of the ninth savanna species, Miconia albicans, predisposed its seedlings to be sensitive to fire, because there was a strong positive correlation between seed size and survivorship. Savanna species were less dependent on woody cover than were forest species, which exhibited higher growth and survival under tree canopies than in open grassland. The low rates of establishment and survival of forest trees in savanna, combined with high sensitivity to fire, appear sufficient to prevent the expansion of forest into savanna under current fire regimes in the Cerrado.  相似文献   

2.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

3.
Rocky outcrops usually have a peculiar vegetation which differs from that of the surrounding vegetation matrix. In Brazil, a savanna type (cerrado rupestre) is particularly characterized by rocky outcrops and is one of eleven vegetation types which occur throughout Cerrado biome. It has been scarcely studied in detail. Therefore, the aim of this study was to investigate the phytogeographical patterns of the woody species in ten areas of the rocky outcrop savanna in the Brazilian Central Plateau. The difference in spatial distribution of the species was assessed through indicator species and CCA ordination analyses. Ten indicator species showed significantly different distribution. The first axis of the ordination showed association with the edaphic gradient, based on maximum temperature, pH and physical properties of the soils (eigenvalue 0.63). The second axis showed an eigenvalue 0.46, associated with poor rainfall and land declivity. It appears that the woody flora of the rocky outcrop savanna areas of the Brazilian Central Plateau is relatively homogeneous, with low β diversity. Apparently, the size of the woody species populations is what distinguishes the ten investigated areas. Therefore, initiatives and actions for the Cerrado biome conservation must consider not only the size of the protected areas but also that of the populations to be protected, especially the woody species on rocky outcrops.  相似文献   

4.
Although several hypotheses aim to explain insect herbivory on plants, the relative importance of plant traits, environment, and organizational scale (i.e., individual or community) to herbivory damage level is not well understood. We used an approach based on a local scale, divided into individual and community levels, to test if plant traits, soil characteristics, and plant density explain leaf damage. We sampled 983 individuals in 49 plots distributed over dense and open savanna formations in Emas National Park. In order to explain plant damage, we performed a multi-model inference analysis of four plant traits associated with plant damage, five soil characteristics, and plant density. We did not find any support to plant vigor or plant stress hypotheses at individual plant level. However, the resource concentration hypothesis and plant stress hypothesis explained leaf damage at the community level. We found that increased availability of calcium (Ca) in soils reduced plant damage at the community level. Because soil Ca concentration is a major constraint to plant development in the Brazilian savanna, we postulated that its increasing availability permits plants to invest more in defense strategies. We demonstrate that plant density, Ca soil concentration, and leaf size can be used to predict the plant damage suffered by woody species in savannas at community level.  相似文献   

5.
Seed predation and seedling mortality can act as strong demographic “bottlenecks” to sapling recruitment in African savanna woodlands. Fire also limits tree recruitment from saplings by suppressing their growth. I conducted field experiments with 13 woody plant species to assess the effects of seed burial on seedling emergence rates and effects of fire on seedling and sapling survival and growth rates over a period of 8 years at a savanna plot in central Zambia, southern Africa. Seed removal rates by small rodents varied among years and buried seeds had significantly higher emergence rates than seeds exposed to predators in most but not all the species. Annual burning reduced sapling growth in some species but in other species saplings experienced successive shoot die back even in the absence of fire. The findings show that for some woody species, seed predation is an important constraint to seedling recruitment but not for others and annual fires are important hindrances to demography and growth for some species but not others. Thus, demographic “bottlenecks” occur at different life history stages in different savanna woody species and these have the potential to alter woody tree competitive relationships and ultimately savanna structure.  相似文献   

6.
Poplar FT2 shortens the juvenile phase and promotes seasonal flowering   总被引:17,自引:0,他引:17       下载免费PDF全文
Hsu CY  Liu Y  Luthe DS  Yuceer C 《The Plant cell》2006,18(8):1846-1861
  相似文献   

7.
The outcome of any interspecific interaction is often determined by the ecological context in which the interacting species are embedded. Plant ontogeny may represent an important source of variation in the outcome of ant–plant mutualisms, as the level of investment in ant rewards, in alternative (non‐biotic) defenses, or both, may be modulated by the plant's developmental stage. In addition, the abundance and identities of the ants involved in the interaction may change during ontogeny of the host‐plant. Here, we evaluated if plant ontogeny affects the interaction between ants and a savanna tree species (Caryocar brasiliense) that produces extrafloral nectar. We found fewer ants per branch and fewer species of ants per tree in juvenile than in reproductive trees of medium and large size. In addition, large‐sized reproductive trees were more likely to host more aggressive ants than were medium‐sized reproductive or juvenile trees. Such differences strongly affected the outcome of the interaction between ants and their host‐plants, as the magnitude of the effect of ants on herbivory was much stronger for large trees than for juvenile ones. The fact that we did not find significant ontogenetic variation in the concentration of leaf tannins suggests that the observed differences in herbivory did not result from a differential investment in chemical defenses among different‐sized plants. Overall, the results of our study indicate that the developmental stage of the host plant is an important factor of conditionality in the interaction between C. brasiliense and arboreal foraging ants.  相似文献   

8.
Summary Photosynthetic and water relations characteristics of small juvenile and large reproductive plants were investigated during one growing season for four woody species native to Red Butte Canyon, Utah, USA: Acer negundo, Artemisia tridentata, Chrysothamnus nauseosus, and Salix exigua. For all species, juvenile plants differed from reproductive plants in at least one of the following characters: water potential, stomatal conductance, photosynthetic rate, or water-use efficiency. Late in the growing season, mortality occurred within juvenile plants (apparently due to a lack of water), but not within reproductive plants. The observed differences between juvenile and reproductive classes are discussed in terms of environment, development, and mortality selection.  相似文献   

9.
Primate fruit choice among plant species has been attributed to different morphological plant and fruit characteristics. Despite a high abundance of animal-dispersed plant species in the savanna–forest mosaic of West Africa, few data are available on the interplay between morphological fruit traits and primate fruit consumers in this ecosystem. We tested whether olive baboons (Papio anubis) at Comoé National Park, north-eastern Ivory Coast, prefer fruit species with particular characteristics relative to the availability of these traits among the woody plant species at the study site. Specifically we were interested in the suites of traits that best predict fruit choice and seed handling by baboons. The baboons ate fruit/seeds from 74 identified plant species, representing 25 percent of the regional pool of woody plant species. They preferred trees to shrubs and lianas as fruit sources. Otherwise, baboons seemed to consume whatever fruit type, color, and size of fruit and seeds available, though they especially included larger fruit into their diet. Against expectations from the African bird–monkey fruit syndrome of brightly colored drupes and berries, baboons ate mostly species having large, dull-colored fruit. Fruit type and color best described whether baboons included a species into their diet, whereas fruit type and seed size best predicted whether baboons predated upon the seeds of their food plant species. As most plant species at the study site had medium-sized to large fruits and seeds, large frugivores like baboons might be particularly important for plant fitness and plant community dynamics in West African savanna–forest ecosystems.  相似文献   

10.
The woody and herbaceous vegetation was investigated around four rural settlements in the savanna area of the eastern Transvaal Lowveld, South Africa. At each settlement three transects radiating out from the settlement, representing a gradient from high to low disturbance, were sampled for community structure and species composition. In general, attributes of woody community structure (density, height, biomass, basal area and diversity) were negatively related to increasing disturbance. Herbaceous cover responded positively. Although individual woody species exhibited a range of responses to disturbance, overall species compositional changes were not related directly to the intensity of disturbance. Individual woody species were classified into behavioural species response groups according to their response along the disturbance gradient. Local wood harvesters demonstrated marked selection for particular species and size classes, which should have disproportional impacts on community structure. However, proportional size class distributions were little altered along the gradient.  相似文献   

11.
Phylogenies of legume taxa are ecologically structured along a tropical seasonality gradient, which suggests phylogenetic niche conservatism. This seasonality gradient spans Neotropical wet forests, savannas, and highly seasonal drought-prone woody vegetation known as the succulent biome. Ecological phylogenetic structure was investigated using a community phylogenetic approach. We further analyzed bioclimatic and other independent variables that potentially explained phylogenetic beta diversity among 466 floristic sites that spanned the savanna and succulent biomes in eastern South America. Explanatory variables were selected using variance inflation factors, information criteria, and the ability to explain both species and phylogenetic beta diversity. A model involving annual precipitation suggests that a threshold of < 1200 mm explains community phylogenetic structure along the savanna–succulent biome transition. Variables involving temperatures or measures of seasonality were notably lacking from top-ranked models. The abundance and diversity of legumes across the tropical seasonality gradient suggest that a high nitrogen metabolism confers an advantage in one of two ways, both of which are related to rapid growth rates. Legumes adapted to the succulent biome may be responding to regular post-dry-season leaf-flush opportunities. Legumes adapted to the savanna biome may be responding to intermittent post-disturbance growing opportunities. A seasonal predominance of leaf flushing by woody plants implicates the role of ecological stability in the succulent biome because of the need to recover the cost of regenerating short-lived leaves. Ecological stability may be the fundamental cause of ecological phylogenetic structure across the tropical seasonality gradient and required for maintaining high levels of both leaf-flushing legume and succulent plant biodiversity.  相似文献   

12.
The conversion of Brazilian savanna into exotic pastures leads to the loss of dung beetles and a decrease in their contribution to ecological functions. We hypothesized that the dung beetle communities from exotic pastures would show greater significant differences between climatic zones, when contrasted to communities from Brazilian savanna in the same region, since dung beetle assemblages in pastures are more simplified. We assessed which variables (purpose of production, type of management, percentage the habitat per buffer, soil penetration resistance, pasture area and herd size) affect more the dung beetle community in exotic pastures. We carried out this study in 48 areas of native Brazilian savannas and exotic pastures distributed across four bioclimatic zones: BZ1, hot with three dry months; BZ2, hot with 4–5 dry months; BZ3, sub-hot with 4–5 dry months and BZ4, meso-thermal with 4–5 dry months of Minas Gerais State, Brazil. In each BZ, six areas of Brazilian savannas and six areas of exotic pasture were selected. In the Brazilian savanna areas, the species richness, abundance and biomass of dung beetles did not differ between the bioclimatic zones, unlike the exotic pastures. The composition of the dung beetle community was different between land use systems and between bioclimatic zones; the interaction between the two factors was also significant. Our results provide evidence that dung beetle communities active in exotic pastures are more susceptible to climatic environmental variations than communities from more complex and stable habitats, such as savannas. Finally, the best model suggested that all the six variables combined explained about 91% of the total variability in species composition observed between sampling sites.  相似文献   

13.
The coexistence of woody and grassy plants in savannas has often been attributed to a rooting-niche separation (two-layer hypothesis). Water was assumed to be the limiting resource for both growth forms and grasses were assumed to extract water from the upper soil layer and trees and bushes from the lower layers. Woody plant encroachment (i.e. an increase in density of woody plants often unpalatable to domestic livestock) is a serious problem in many savannas and is believed to be the result of overgrazing in ‘two-layer systems’. Recent research has questioned the universality of both the two-layer hypothesis and the hypothesis that overgrazing is the cause of woody plant encroachment.

We present an alternative hypothesis explaining both tree–grass coexistence and woody plant encroachment in arid savannas. We propose that woody plant encroachment is part of a cyclical succession between open savanna and woody dominance and is driven by two factors: rainfall that is highly variable in space and time, and inter-tree competition. In this case, savanna landscapes are composed of many patches (a few hectares in size) in different states of transition between grassy and woody dominance, i.e. we hypothesize that arid savannas are patch-dynamic systems. We summarize patterns of tree distribution observed in an arid savanna in Namibia and show that these patterns are in agreement with the patch-dynamic savanna hypothesis. We discuss the applicability of this hypothesis to fire-dominated savannas, in which rainfall variability is low and fire drives spatial heterogeneity.

We conclude that field studies are more likely to contribute to a general understanding of tree–grass coexistence and woody plant encroachment if they consider both primary (rain and nutrients) and secondary (fire and grazing) determinants of patch properties across different savannas.  相似文献   


14.
1. Life history theory generally predicts a trade-off between shortjuvenile development and large adult size, assuming invariant growth rates within species. This pivotal assumption has been explicitly tested in few organisms. 2. We studied ontogeny in 13 populations of Omocestus viridulus grasshoppers under common garden conditions. High-altitude populations, facing short growing seasons and thus seasonal time constraints, were found to grow at a similar rate to low altitude conspecifics. 3. Instead, high-altitude grasshoppers evolved faster development, and the correlated change in body size led to an altitudinal size cline mediating a trade-off with female fecundity. 4. An additional juvenile stage occurred in low- but not high-altitude females. This difference is probably due to the evolution of lowered critical size thresholds in high-altitude grasshoppers to accelerate development. 5. We found a strikingly lower growth rate in males than females that we interpret as the outcome of concurrent selection for protandry and small male size. 6. Within populations, large individuals developed faster than small individuals, suggesting within-population genetic variation in growth rates. 7. We provide evidence that different time constraints (seasonal, protandry selection) can lead to different evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits within populations cannot generally be used to predict life history adaptation among populations. Moreover, our study illustrates that comparisons of ontogenetic patterns can shed light on the developmental basis underlying phenotypic evolution.  相似文献   

15.
Fire is a key determinant of tropical savanna structure and functioning. High fire frequencies are expected to assemble closely related species with a restricted range of functional trait values. Here we determined the effect of fire on phylogenetic and functional diversity of woody species and individuals in savanna communities under different fire frequencies. We found phylogenetic signals for one third of the functional traits studied. High numbers of fires simultaneously led to phylogenetic overdispersion and functional clustering when communities were represented by mean trait values with all traits that putatively should be affected or respond to fire. This finding is important, because it shows that the relationship between ecological processes and the phylogenetic structure of communities is not straightforward. Thus, we cannot always assume that close relatives are more similar in their ecological features. However, when considering a different set of traits representing different plant strategies (fire resistance/avoidance, physiological traits and regeneration traits), the results were not always congruent. When asking how communities are assembled in terms of individuals (not species) the outcome was different from the species-based approach, suggesting that the realised trait values – rather than mean species trait values – have an important role in driving community assembly. Thus, intraspecific trait variability should be taken into account if we want fully to improve our mechanistic understanding of assembly rules in plant communities.  相似文献   

16.
17.
The relationships between floristic patterns and environmental variation in tropical savannas have been the focus of many studies worldwide. However, important aspects of these relationships, such as the role of geographic distance in structuring plant communities, have received little attention. We investigated the individual and combined influences of substrate, climatic, and spatial factors on the floristic‐structural dissimilarity between two savanna physiognomies in the core region of Brazilian savannas: one on plain relief with deep soils and another on steep relief with shallow rocky soils. Ten 1‐ha plots were sampled in each physiognomy. We modeled species abundance using multiple linear models and variance partitioning. Our results indicated that spatial processes that are intrinsically related to species variation have negligible effects on floristic variation. The most important predictors in our models were related to soil characteristics (mainly nutrient availability) and topography (relief and elevation). Consequently, the substrate component exhibited the greatest power (14%) in explaining the floristic‐structural variation in the overall variance partitioning. Our results provide the first demonstration of the individual and combined contributions of substrate, climatic, and spatial factors to the occurrence and abundance of woody species in the most diverse and threatened savanna in the world. We also provide evidence that neutral processes might not be strong predictors of vegetation structure where savanna substrates differ greatly; instead, community structure may be primarily regulated by environmental filters.  相似文献   

18.
Resprouting is an efficient life history strategy by which woody savanna species can recover their aboveground biomass after fire. However, resprouting dynamics after fire and the time it takes to start producing flowers and fruits are still poorly understood, especially for the Brazilian savanna (Cerrado biome), where fire is an important driver of vegetation structure and ecosystem functioning. We investigated the resprouting dynamics and production of flowers and fruits of 26 woody species (20 tree and 6 shrub species for a total of 485 individuals) that were burned and the production of flowers and fruits for a subset of 12 species (139 individuals) in an unburned area in a Brazilian savanna. We classified the species’ resprouting strategies as hypogeal (at the soil level, with main stem death), epigeal (on the main stem or crown), and hypogeal + epigeal. We used generalized linear mixed-effect models to identify the post-fire recovery patterns for five years. Individuals with basal resprouts (hypogeal and hypogeal + epigeal resprouting) produced an average of 6 basal resprouts, but only 33% of resprouts survived after five years. Individuals in burned areas produced fewer flowers and fruits than individuals in unburned areas. At least a subset of individuals in all the resprouting strategies started to produce flowers and fruits in the first-year post-fire. About 68% of the species with hypogeal resprouts produced flowers and fruits in the first-year post-fire, but the intensity of flowering and fruiting was lower compared to individuals with other resprouting strategies over time. Although woody species have invested in post-fire growth and sexual reproduction in all resprouting strategies, the long time needed to recover these processes can make these species more vulnerable to frequent fires.  相似文献   

19.
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one.  相似文献   

20.
To investigate the existence of coordinated sets of seedling traits adapted to contrasting establishment conditions, we examined evolutionary convergence in seedling traits for 299 French Guianan woody plant species and the stress response in a shadehouse of species representing seed size gradients within five major cotyledon morphology types. The French Guianan woody plant community has larger seeds than other tropical forest communities and the largest proportion of hypogeal cotyledon type (59.2%) reported for tropical forests. Yet the community includes many species with intermediate size seeds that produce seedlings with different cotyledonal morphologies. A split-plot factorial design with two light levels (0.8% and 16.1% PAR) and four damage treatments (control, seed damage, leaf damage, stem damage) was used in the shadehouse experiment. Although larger-seeded species had higher survival and slower growth, these patterns were better explained by cotyledon type than by seed mass. Even larger-seeded species with foliar cotyledons grew faster than species with reserve-type cotyledons, and survival after stem grazing was five times higher in seedlings with hypogeal cotyledons than with epigeal cotyledons. Thus, to predict seedling performance using seed size, seedling morphology must also be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号