首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between food web dynamics and hydrological connectivity in rivers should be strongly influenced by annual flood pulses that affect primary production dynamics and movement of organic matter and consumer taxa. We sampled basal production sources and fishes from connected lagoons and the main channel of a low-gradient, floodplain river within the Orinoco River Basin in Venezuela. Stable isotope analysis was used to model the contribution of four basal production sources to fishes, and to examine patterns of mean trophic position during the falling-water period of the annual flood cycle. IsoSource, a multi-source mixing model, indicated that proportional contributions from production sources to fish assemblages were similar in lagoons and the main channel. Although distributions differed, the means for trophic positions of fish assemblages as well as individual species were similar between the two habitats. These findings contradict recent food web studies conducted in temperate floodplain rivers that described significant differences in trophic positions of fishes from slackwater and floodplain versus main channel habitats. Low between-habitat trophic variation in this tropical river probably results from an extended annual flood pulse (ca. 5 mo.) that allows mixing of sestonic and allochthonous basal production sources and extensive lateral movements of fishes throughout the riverscape.  相似文献   

2.
Rotifers were collected in the open water of twenty-eight locations (3 rivers, 12 connected lagoons and 13 isolated lagoons) of the upper Paraná River floodplain during the high water (February) and low water (August) period of 2001. Greatest species richness was found in rivers during the high water period. Isolated lagoons had the lowest species richness. Abundance was highest in connected lagoons followed by isolated lagoons and then rivers, but did not show marked spatial or temporal variation. Some species dominated in isolated lagoons during high water and others in connected lagoons during the low water. These results were contrary to our expectations; we expected to observe highest species richness and abundance of rotifers in isolated lagoons during both extremes of the hydrological cycle. Our findings suggest the importance of connectivity among environments to rotifer species richness. The absence of an intense flood during 2001 facilitated development of rotifer populations during the high water period due to lack of dilution and high availability of food resources (phytoplankton).  相似文献   

3.
To evaluate the influence of main channel–floodplain connectivity on fish assemblage diversity in floodplains associated with streams and small rivers, fish assemblages and habitat characteristics were surveyed at 24 stream reaches in the Champlain Valley of Vermont, U.S.A. Fish assemblages differed markedly between the main channel and the floodplain. Fish assemblage diversity was greatest at reaches that exhibited high floodplain connectivity. Whereas certain species inhabited only main channels or floodplains, others utilized both main channel and floodplain habitats. Both floodplain fish α-diversity and γ-diversity of the entire stream corridor were positively correlated with connectivity between the main channel and its floodplain. Consistent with these results, species turnover (as measured by β-diversity) was negatively correlated with floodplain connectivity. Floodplains with waterbodies characterized by a wide range of water depths and turbidity levels exhibited high fish diversity. The results suggest that by separating rivers from their floodplains, incision and subsequent channel widening will have detrimental effects on multiple aspects of fish assemblage diversity across the stream–floodplain ecosystem.  相似文献   

4.
The habitat heterogeneity generated and sustained by the connectivity of floodplain habitats, the seasonal flood pulse, and the variability of the physical structures typically found in floodplains of large rivers results in a variable space–time mosaic of water sources that results in a high biodiversity of the river-floodplain system. In order to assess the implications of natural connectivity and the heterogeneity on the patterns of macroinvertebrate assemblages at different spatial scales, monthly samplings in six different mesohabitats (lakes with different hydrological connection and secondary channels with permanently and intermittent flow) of the Paraná River floodplain were performed from April 2005 to March 2006. The mesohabitats had different granulometry and detritus composition of their bottom sediments. They also had different conductivity, transparency, and depth in relation to the different connectivity degrees. Mesohabitats differed in the abundance of macroinvertebrates of different taxonomic groups and diversity. The environmental variables were correlated to the patterns of macroinvertebrate abundance, with dominance of different species of annelids and mollusks at the patch, mesohabitats, and island scales. An alpha diversity gradient from the isolated lake (65 taxonomic units) to the secondary channels (25 taxonomic units) was obtained. The analyzed mesohabitats showed a high taxa turnover, with high values not only among the mesohabitats located in the different islands, but also among the mesohabitats in relation to different connectivity degrees. The mesohabitats showed negative co-occurrence of macroinvertebrate assemblages. The spatial heterogeneity, sustained by the connectivity degree, played a key role in structuring benthic assemblages at different scales, positively influencing the regional diversity.  相似文献   

5.
In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels; parapotamon: channels connected permanently with the main channel only at their downstream ends; plesiopotamon: disconnected channels close to the main channel; paleopotamon: abandoned meanders at a greater distance from the main channel.Spatial variety was studied by analyzing the summer species composition in 70 Lower Rhine and Meuse water bodies which were categorized in connectivity habitats, whereas seasonal variety was studied in Lower Rhine water bodies along a connectivity gradient by monthly sampling over a whole year. Physico-chemical data and environmental parameters were recorded for each water body during sampling. Diversity and species assemblages of caddisfly larvae varied in relation to connectivity, macrophyte diversity and abundance and stream velocity. A comparison with historical records and species lists from less disturbed rivers showed that diversity in the main channel was very low.Caddisfly larvae species assemblages varied over the connectivity gradient. Lotic habitats (eupotamon) were separated from the lentic ones, and the well vegetated paleopotamon from the sparsely vegetated parapotamon and pleisopotamon habitats, indicating the overall importance of vegetation and current velocity for the species assemblages. Hydropsychidae have been found in the eupotamon exclusively, whereas Limnephilidae, Hydroptilidae and Polycentropodidae have been found predominantly in the paleopotamon water bodies. Leptoceridae were found in all floodplain water body categories. A similar pattern of distribution of families along the lateral connectivity gradient was found in more natural rivers.Caddisfly larvae species feeding traits showed a clear differentiation over the lateral connectivity gradient with filter-feeders and scrapers most important in the eupotamon and parapotamon, and shredders, piercers and predators most dominant in the paleopotamon habitats, indicating the importance of nutritional resources in relation to hydrological connectivity for the structure and functioning of caddisfly larvae species assemblages. The analysis of the species feeding traits allows generalizations towards the entire aquatic community and general prognoses for other floodplain ecosystems.  相似文献   

6.
This study proposes that diversity and abundance of rotifers show spatial and temporal variations in the Upper Paraná River floodplain due to heterogeneity of the environment and hydrological level fluctuations of the main river. The structure and dynamics of rotifer assemblages were investigated by samplings carried out during the rainy (February) and dry period (August) of the year 2000, in 36 environments (rivers, channels, backwaters, open and isolated floodplain lakes). The influence of phytoplankton biomass on rotifer diversity and abundance was also investigated. 104 taxa of rotifers were identified. The highest species richness was found in rivers and open floodplain lakes, the highest abundances in the isolated floodplain lakes, and the highest values of species diversity in the channels, especially during the rainy period. β2-diversity values were higher in the channels, especially during the dry period. Flow differences and food availability were predominant factors influencing the structure and dynamics of the rotifer communities.  相似文献   

7.
1. Floodplain inundation provides many benefits to fish assemblages of floodplain river systems, particularly those with a predictable annual flood pulse that drives yearly peaks in fish production. In arid‐zone rivers, hydrological patterns are highly variable and the influence of irregular floods on fish production and floodplain energy subsidies may be less clear‐cut. To investigate the importance of floodplain inundation to a dryland river fish assemblage, we sampled fish life stages on the floodplain of Cooper Creek, an Australian arid‐zone river. Sampling was focused around Windorah during a major flood in January 2004 and in isolated waterholes in March 2004 following flood drawdown. 2. Of the 12 native species known to occur in this region, 11 were present on the floodplain, and all were represented by at least two of three life‐stages – larvae, juveniles or adult fish. Late stage larvae of six fish species were found on the floodplain. There were site‐specific differences in larval species assemblages, individual species abundances and larval distribution patterns among floodplain sites. 3. Significant growth was evident on the floodplain, particularly by larval and juvenile fish, reflecting the combination of high water temperatures and shallow, food rich habitats provided by the relatively flat floodplain. 4. Low variation in biomass, species richness and presence/absence of juvenile and adult fish across four floodplain sites indicates consistently high fish productivity across an extensive area. 5. Similarities and differences in fish biomass between the floodplain and isolated post‐flood waterholes suggest high rates of biomass transfer (involving the most abundant species) into local waterholes and, potentially, biomass transfer by some species to other waterholes in the catchment during floodplain inundation and after floods recede. 6. The high concentration of fish on this shallow floodplain suggests it could be a key area of high fish production that drives a significant proportion of waterhole productivity in the vicinity. The Windorah floodplain provides favourable conditions necessary for the spawning of some species and juvenile recruitment of the majority of species. It is also appears to be a significant conduit for the movements of fish that underpin high genetic similarity, hence population mixing, of many species throughout the Cooper Creek catchment. The high floodplain fish production in turn provides a significant energy subsidy to waterholes after floodwaters recede. 7. The identification of key sites of high fish production, such as the Windorah floodplain, may be important from a conservation perspective. Key management principles should be: maintenance of the natural flooding regime; identification of the most productive floodplain areas; and maintenance of their connectivity to anastomosing river channels and the remnant aquatic habitats that ultimately sustain this fish assemblage through long‐term dry/drought and flood cycles.  相似文献   

8.
The present study evaluated the hypothesis that after flooding events, non-random patterns of species co-occurrence (segregation) are progressively intensified in fish assemblages inhabiting seasonally isolated lagoons. We sampled lagoons in the upper Paraná River floodplain between 1992 and 1993, and classified them into five hydrological phases, according to their surface connectivity. During the period of isolation (9 months), lagoons depth decreased progressively, but desiccation was reversed after 4 months (possibly due to groundwater infiltration and rainfall). A significant co-occurrence pattern (segregation) occurred in the last phase, supporting our initial hypothesis. However, richness, abundance and composition were significantly correlated with habitat depth, indicating that assemblage structure and organization is closely associated with dynamics of habitat retraction/expansion during isolation. Although environmental conditions of lagoons (absence of prolonged desiccation) prevented an adequate test of our hypothesis, our data suggests that, in addition to the importance of surface floods, the hydrological cycle as a whole has a crucial role shaping the organization of fish assemblages in floodplain lagoons seasonally isolated.  相似文献   

9.
1. Floodplain rivers in Australia's wet/dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna.
2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta.
3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation.
4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages.
5. Conservation of the biodiversity in Australia's wet/dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers.  相似文献   

10.
One of the main issues in community ecology is the detection of structure and the identification of its related causes. In this study, co-occurrence null models were used to identify possible spatio-temporal patterns in the assemblage of aquatic macrophytes in the Upper Paraná River floodplain. The samples were obtained through the Long Term Ecological Research (LTER) Program at two different grains: (1) a coarser spatial grain in January and August 2001 (entire floodplain lagoons); (2) and a finer spatial grain in November 2006 (1 m2 quadrats). The study was conducted in 36 lagoons, both connected and disconnected to the main river channel, located in the sub-basins of the Baía, Ivinheima and Paraná rivers. Two null models of species co-occurrence, the C-Score and Checkerboard indices, were used to test the null hypothesis of random structure of the aquatic macrophyte assemblages. The null models showed that the aquatic macrophyte assemblages were spatially structured in the distinct spatial grains. However, despite this general pattern, macrophyte assemblages are organized differently depending on the degree of connectivity, seasonal period and, at a finer grain, depth. Species co-occurrences were random in the disconnected lagoons during flood periods, in deep zones of the lagoons of the Baía River and in the shallow littoral zone in the lagoons of the Paraná River. Analysis of the patterns of co-occurrence indicated that competition and/or habitat preferences are probably important influences on the nonrandom structure of assemblages. However, we suppose that at least three important factors (disturbances by water level fluctuation, dispersion and facilitation) counteract potential effects of competition in specific situations, leading macrophyte assemblages to assume random structure.  相似文献   

11.
12.
1. Floodplains and their water bodies are typical ecotopes of large lowland rivers. The lowland Oder River, Germany, provided a rare opportunity to study fish assemblages of comparable floodplain water bodies differing by >50 years of isolation history. We hypothesised that true floodplain specialists peak in rarely connected water bodies, while frequently flooded waters support tolerant generalists. 2. Three macrohabitats, main channel (MC), temporarily connected and isolated floodplain water bodies, were sampled by electro‐fishing and their fish assemblage characters recorded. 3. Long‐term isolation of floodplain water bodies had a significant effect on the fish assemblage by promoting species preferring still water. Limnophilic and floodplain specialist species significantly increased with isolation. 4. Fish densities, species richness and diversity clearly differed between MC sites and floodplain water bodies. Shannon’s species diversity index peaked in both the MC and isolated waters and was lowest in the temporarily flooded waters where eurytopic fish dominated. 5. The significant gain in abundance and numbers of limnophilic species in the isolated compared to the temporarily flooded water bodies underpinned the significant contribution of long‐term isolated waters to the gamma‐diversity of large floodplain rivers, which should be considered in floodplain rehabilitation.  相似文献   

13.
We studied the structure and population dynamics of zooplankton assemblages in the water bodies (eu‐, para‐, plesiopotamal and conjunctive water bodies) of a temperate floodplain during flood events. Here we report differences in the species composition of these water bodies in the two stages of flood pulses: rising vs. receding. During the receding period the proportion of larger and tychoplanktonic species increased. Similarity among zooplankton assemblages of these floodplain water bodies increased during the rising and decreased during the receding period. Species richness, diversity and population density values of zooplankton assemblages increased during the receding period in all types of water bodies except the eupotamal. The guild ratio of rotifer assemblages showed characteristic, but somewhat ambiguous changes. We conclude that the hydrological regime affects the structure and dynamics of zooplankton assemblages on the floodplain. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large river-floodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a focus on spatial and temporal patterns in floodplain lake connectivity, and (2) flood volume and fisheries catch. Our results demonstrate a non-linear relationship between discharge and floodplain inundation with considerable hysteresis due to differences in inundation and drainage rate. Inundation extent was mostly determined by flood volume, not peak discharge. We found that the more isolated lakes (that is, lakes with a shorter connection duration to the river) are located at higher local elevation and at larger hydrological distance from the main rivers: geographical distance to the river appears a poor predictor of lake isolation. Although year-to-year fish catches in the floodplain were significantly larger with larger flood volumes in the floodplain, they were not in the main river, suggesting that mechanisms that increase catch, such as increased floodplain access or increased somatic growth, are stimulated by flooding in the floodplain, but not in the river. Fish species that profit from flooding belong to different feeding guilds, suggesting that all trophic levels may benefit from flooding. We found indications that the ecological functioning of floodplains is not limited to its temporary availability as habitat. Refugia can be present within the floodplain itself, which should be considered in the management of large rivers and their floodplain.  相似文献   

15.
The flood regime is the most important force determining seasonality in neotropical rivers. In the Upper Paran River floodplain, it is the primary factor influencing biological processes. The aim of this paper is to summarize information on the influence of dam-controlled floods on some fish assemblage attributes, reproduction and recruitment in the Upper Paran River floodplain, providing preliminary guidelines for dam operation upstream. Fish were collected in different habitats of the Upper Paran River floodplain (river, channels and lagoons) in the period from 1986 to 2001. The high water period in the Paran River usually occurs from November/December to April/May. Annual variation in the hydrograph affects species with distinct life history strategies differently, and influences the composition and structure of fish assemblages. Large floods were associated with higher species richness. Frequencies of individuals with ripe and partially spent gonads, which indicate spawning, were higher during the period of increasing water level. Dependence on floods seems to be lowest in sedentary species that develop parental care, and highest in large migratory species that spawn in the upper stretches of the basin and use flooded areas as nurseries. Migratory fishes were favored by annual floods that lasted more than 75 days, with longer floods yielding larger populations. The occurrence of high water levels at the beginning of summer is fundamental to the spawning success of migratory species. However, the flood may be less important for recruitment of juveniles if it is of short duration. Dam operation upstream (releasing more water during the raining season) has potential to promote greater floods with appropriate duration improving recruitment, particularly for migratory species.  相似文献   

16.
17.
18.
Managing and restoring faunal diversity across large areas requires an understanding of the roles of connectivity and dispersal in driving community patterns. We sought to determine the influence of connectivity, water regime, water source, geographical location, and dispersal traits on patterns of aquatic invertebrate diversity across a continent‐wide arid biome. We compiled data on freshwater invertebrate assemblages from sites spanning the breadth of arid Australia. Univariate analyses (analysis of variance and rarefaction) revealed that alpha and gamma diversity across sites decreased as latitude increased. Multivariate analyses (ordination and analysis of similarity) revealed that community composition had considerable fidelity to geographic regions. Hydrological connectivity was strongly associated with riverine community composition although water rarely flowed (often less than annually). Hydrologically isolated sites (springs and rockholes) supported communities that were markedly dissimilar to hydrologically connected sites, and to each other. We investigated the influence of dispersal on diversity patterns by examining distance decay relationships for each of four dispersal trait groups (obligate aquatic and passive, weak, and strong aerial dispersers) on the basis of geodesic (shortest path) distances between pairs of sites and Mantel tests. We did not detect clear differences between dispersal traits and distance decay relationships at the continental scale, even for the two groups with the lowest dispersal ability (obligate aquatics and passive dispersers). Our results suggest that the loss of hydrological connectivity from water developments in arid lands (for example, the impoundment of intermittent rivers) is likely to affect macroinvertebrates. However, the exact flow mechanisms underlying such changes remain to be determined.  相似文献   

19.
Free-living nematodes are sensitive to most of the disturbances and therefore have ability to reflect direct structural and functional changes in an ecosystem. We studied nematode assemblages of Chilika Lagoon, the largest lagoon of Asia, across spatio-temporal scales in link with environmental variables and evaluated nematode assemblages as a proxy to characterize lagoonal benthic habitat settings. Our results revealed that nematode communities showed significant variation spatially and temporally in terms of mean density (16–854/10 cm2) and mean number of species (7–74). Salinity is the key factor that controls nematode community structure across this lagoon and was strongly supported by statistical analyses. The observed nematode assemblages were further used as a proxy to assign benthic habitats of Chilika into distinct biological, topographical and hydrological settings. This study showed that nematode assemblages could be effectively used for long term ecological monitoring of dynamic sedimentary environment of lagoons globally.  相似文献   

20.
Fish assemblages across a complex,tropical freshwater/marine ecotone   总被引:2,自引:0,他引:2  
Synopsis Riverine fish assemblages in the temperate zone generally show strong longitudinal patterns of faunal turnover and increases in species richness with increasing stream order. We examined the composition and structure of tropical fish assemblages across a complex freshwater/marine ecotone in Tortuguero National Park on the Caribbean coast of Central America. Species turnover was high between four characteristic habitats that largely corresponded with a longitudinal gradient of stream order over distances of less than 30 km. Suites of common fish species characterized each habitat: creeks, rivers, lagoons, and the sea. In addition to the habitat endemics, several species spanned two habitat types, but only three species were collected in more than two habitats. Multivariate gradient analysis of fish assemblages reflected a gradient of habitats that to some extent corresponded to fluvial distances. Due to the unusual configuration of coastal lagoons lying parallel to the coast, the ordination gradient showed little correlation with linear distance to the coast. Environmental variables related to habitat size and salinity showed greatest correspondence with the fish assemblage ordination gradient. Invertebrate-feeding fishes were the predominant trophic group in 15 of 16 fish assemblages, and inland creek sites contained a greater proportion of herbivores and omnivores than other sites. The relative fraction of herbivorous and detritivorous fishes showed a monotonic decline along the longitudinal habitat gradient from inland to coast. Patterns of species composition and richness at Tortuguero Park appeared to agree well with earlier models of factors influencing temperate zone stream fishes. Headwaters have low aquatic primary productivity and contain small colonizing fish species subject to large fluctuations in local densities and intermittent competition. Lagoons contain both large and small species, the latter being restricted largely to shallow edge habitats by predation. Lagoons exhibit more lentic environmental conditions, experience relatively fewer periodic disturbances than headwaters, and their assemblages are inferred to be under relatively greater influence of biotic factors. Fish assemblages of rivers and caños (swampy side channels and braids) appear to be under less abiotic control than headwaters and influenced less by biotic factors than lagoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号