首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1.  We discuss a simple implicit-space model for the competition of trees and grasses in an idealized savanna environment. The model represents patch occupancy dynamics within the habitat and introduces life stage structure in the tree population, namely adults and seedlings. A tree can be out-competed by grasses only as long as it is a seedling.
2.  The model is able to predict grassland, forest, savanna and bistability between forest and grassland, depending on the different characteristics of the ecosystem, represented by the model's parameters.
3.  The inclusion of stochastic fire disturbances significantly widens the parameter range where coexistence of trees and grasses is found. At the same time, grass-fire feedback can induce bistability between forest and grassland.
4.   Synthesis . These results suggest that tree–grass coexistence in savannas can be either deterministically stable or stabilized by random disturbances, depending on prevailing environmental conditions and on the types of plant species present in the ecosystem.  相似文献   

3.
Abstract Fire is a dominant feature of tropical savannas throughout the world, and provides a unique opportunity for habitat management at the landscape scale. We provide the background and methodology for a landscape-scale savanna fire experiment at Kapalga, located in Kakadu National Park in the seasonal tropics of northern Australia. The experiment addresses the limitations of previous savanna fire experiments, including inappropriately small sizes of experimental units, lack of replication, consideration of a narrow range of ecological responses and an absence of detailed measurement of fire behaviour. In contrast to those elsewhere in the world, Australia's savannas are sparsely populated and largely uncleared, with fires lit primarily in a conservation, rather than pastoral, context. Fire management has played an integral role in the traditional lifestyles of Aboriginal people, who have occupied the land for perhaps 50 000 years or more. Currently the dominant fire management paradigm is one of extensive prescribed burning early in the dry season (May-June), in order to limit the extent and severity of fires occurring later in the year. The ecological effects of different fire regimes are hotly debated, but we identify geo-chemical cycling, tree demography, faunal diversity and composition, phenology, and the relative importance of fire intensity, timing and frequency, as critical issues. Experimental units (‘compartments’) at Kapalga are 15–20km2 catchments, centred on seasonal creeks that drain into major rivers. Each compartment has been burnt according to one of four treatments, each replicated at least three times: ‘Early’- fires lit early in the dry season, which is the predominant management regime in the region; ‘Late’- fires lit late in the dry season, as occurs extensively in the region as unmanaged ‘wildfires’; ‘Progressive’- fires lit progressively throughout the dry season, such that different parts of the landscape are burnt as they progressively dry out (believed to approximate traditional Aboriginal burning practices); and ‘Unburnt’- no fires lit, and wildfires excluded. All burning treatments have been applied annually for 5 years, from 1990 to 1994. Six core projects have been conducted within the experimental framework, focusing on nutrients and atmospheric chemistry, temporary streams, vegetation, insects, small mammals, and vertebrate predators. Detailed measurements of fire intensity have been taken to help interpret ecological responses. The Kapalga fire experiment is multidisciplinary, treatments have been applied at a landscape scale with replication, and ecological responses can be related directly to measurements of fire intensity. We are confident that this experiment will yield important insights into the fire ecology of tropical savannas, and will make a valuable contribution to their conservation management.  相似文献   

4.
The frequency of fire has increased in savannas yet few studies have assessed how plants persist when subjected to long‐term disturbance by fire. We investigated the contributions of bark thickness and resprouting to the persistence of woody plants in two fire trials that were started in 1948 and 1949. The number of resprouts per individual, bark thickness, basal diameter and height of woody plants were measured in unburnt plots and those burnt annually, triennially and quinquennially during the late dry season. Changes in tree density, number of resprouts and individuals in different height classes between 1963 and 2002 were assessed. Bark thickness varied among species and also increased with increases in basal diameter. Generally, plants with thick bark survived fire more than those with thin bark. Resprouting was the major fire survival strategy for most species. The number of resprouts produced per plant ranged from 4 ± 3 (Acacia rehmanniana) to 14 ± 9 (Pseudolachnostylis maprouneifolia). Fire reduced species richness in plots burnt annually and triennially by 47% and 6% respectively. Species richness increased in unburnt plots (5%) and those burnt quinquennially (16%). Most woody species survived fire through a combination of traits.  相似文献   

5.
6.
We propose that elevated CO2 may have a significant positive effect on woody plant success and thus favour tree invasion and thickening in grass‐dominated ecosystems. We note that savanna tree biomass is strongly constrained by disturbance, particularly fire, and that elevated CO2 could act to reduce this constraint. Our argument combines knowledge of tree recovery from injury after grassland fires, with theory about carbon acquisition and carbohydrate storage patterns in C3 woody plants in response to elevated CO2. We propose simply that elevated CO2 will tend to favour regrowth of juvenile trees trapped (sometimes for decades) in the ‘topkill’ zone, thus allowing them to escape more readily from periodic fires as CO2 continues to rise. Little empirical evidence exists to test this hypothesis, even though the process may have important implications for tree/grass codominated ecosystems currently in a dynamic equilibrium.  相似文献   

7.
8.
The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass‐fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire‐proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo‐records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50–100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses.  相似文献   

9.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

10.
11.
Aim   This study aims to improve the formulation and results of the Brazilian Center for Weather Forecasting and Climate Studies Potential Vegetation Model (CPTEC-PVM) by developing a new parameterization for the long-term occurrence of fire in regions of potential savannas in the tropics. Compared with the relatively slow processes of carbon uptake and growth in vegetation, fast mortality and biomass consumption by fires may favour grasses and reduce tree coverage.
Location   The tropics.
Methods   For finding large-scale relationships between fires and other environmental factors, we made two main simplifying assumptions. First, lightning is the most important source of ignition for natural fires. Second, over continental areas in the tropics, lightning is mainly related to the zonal flux of moisture transport.
Results   The parameterization of fire occurrence was built based on a simple empirical relationship, combining information on mean and intra-annual variance of the zonal wind.
Main conclusions   The implementation of this new relationship improved the formulation and the results of the CPTEC-PVM. As a result of this new parameter, the accuracy of the model in allocating the correct vegetation (seasonal forests) instead of savannas for large regions in India and Southeast Asia is now substantially higher than in previous studies.  相似文献   

12.

Aim

The aims of this study were to (1) estimate current rates of woody encroachment across African savannas; (2) identify relationships between change in woody cover and potential drivers, including water constraints, fire frequency and livestock density. The found relationships led us to pursue a third goal: (3) use temporal dynamics in woody cover to estimate potential woody cover.

Location

Sub‐Saharan African savannas.

Methods

The study used very high spatial resolution satellite imagery at sites with overlapping older (2002–2006) and newer (2011–2016) imagery to estimate change in woody cover. We sampled 596 sites in 38 separate areas across African savannas. Areas with high anthropogenic impact were avoided in order to more clearly identify the influence of environmental factors. Relationships between woody cover change and potential drivers were identified using linear regression and simultaneous autoregression, where the latter accounts for spatial autocorrelation.

Results

The mean annual change in woody cover across our study areas was 0.25% per year. Although we cannot explain the general trend of encroachment based on our data, we found that change rates were positively correlated with the difference between potential woody cover and actual woody cover (a proxy for water availability; < .001), and negatively correlated with fire frequency (p < .01). Using the relationship between rates of encroachment and initial cover, we estimated potential woody cover at different rainfall levels.

Main conclusions

The results indicate that woody encroachment is ongoing and widespread across African savannas. The fact that the difference between potential and actual cover was the most significant predictor highlights the central role of water availability and tree–tree competition in controlling change in woody populations, both in water‐limited and mesic savannas. Our approach to derive potential woody cover from the woody cover change trajectories demonstrates that temporal dynamics in woody populations can be used to infer resource limitations.  相似文献   

13.
Abstract We surveyed herbaceous biomass across the range of Eucalyptus tetrodonta savannas in north‐western Australia. Sample sites (n = 211) were stratified within four broad geographical regions characterized by different mixes of land management regimes. Grasses dominated (87% mean) the herbaceous biomass. After controlling for climatic and edaphic gradients, herbaceous biomass was highest in the Greater Darwin region (2.2 t ha−1) which is managed predominantly by Europeans, and least under semi‐traditional Aboriginal management in Arnhem Land region (1.1 t ha−1). In the drier Gulf of Carpentaria and Kimberley regions, where a mix of Aboriginal, conservation and pastoral land uses occurs, fuel loads were higher than in Arnhem Land region but still considerably lower than around Darwin. Sarga was recorded in all regions except the Gulf of Carpentaria and had the highest biomass in Darwin (0.88 t ha−1) and lowest biomass in the Kimberley (0.54 t ha−1). The proportion of herbaceous biomass made up of perennial grasses was least in Darwin (17%) and greatest in the Gulf (77%) regions. We suggest that climate, soils and land management account for differences between the drier pastoral regions of the Gulf of Carpentaria and the Kimberley and the wet Greater Darwin region relative to the Arnhem Land region. The high frequency, and larger spatial scale, of fires in the Greater Darwin region relative to the Arnhem Land region underpins the contrasting trends in total herbaceous biomass and abundance of flammable annual grasses.  相似文献   

14.
Abstract A new algorithm for the responses of Eucalyptus species to fire was developed to be used in BRIND, an existing forest gap simulation model. After a fire, trees may be: (i) killed outright; (ii) have their above-ground parts killed but resprout from basal lignotubers; or (iii) continue to grow from undamaged and epicormic above-ground buds. Data collected after a fire in the Gudgenby region, Brindabella Ranges, southern Australian Capital Territory, indicate that tree size and vigour can be used to predict the response of individual trees. There was not enough information about fire intensity to estimate its effect on the response of trees. The new algorithm was tested using data from a 1982 fire in Bushrangers Creek, Brindabella Ranges. The predicted probabilities of stem death were similar to the field data.  相似文献   

15.
Fire regimes shape plant communities but are shifting with changing climate. More frequent fires of increasing intensity are burning across a broader range of seasons. Despite this, impacts that changes in fire season have on plant populations, or how they interact with other fire regime elements, are still relatively understudied. We asked (a) how does the season of fire affect plant vigor, including vegetative growth and flowering after a fire event, and (b) do different functional resprouting groups respond differently to the effects of season of fire? We sampled a total of 887 plants across 36 sites using a space‐for‐time design to assess resprouting vigor and reproductive output for five plant species. Sites represented either a spring or autumn burn, aged one to three years old. Season of fire had the clearest impacts on flowering in Lambertia formosa with a 152% increase in the number of plants flowering and a 45% increase in number of flowers per plant after autumn compared with spring fires. There were also season × severity interactions for total flowers produced for Leptospermum polygalifolium and L. trinervium with both species producing greater flowering in autumn, but only after lower severity fires. Severity of fire was a more important driver in vegetative growth than fire season. Season of fire impacts have previously been seen as synonymous with the effects of fire severity; however, we found that fire season and severity can have clear and independent, as well as interacting, impacts on post‐fire vegetative growth and reproductive response of resprouting species. Overall, we observed that there were positive effects of autumn fires on reproductive traits, while vegetative growth was positively related to fire severity and pre‐fire plant size.  相似文献   

16.
A continental-scale analysis of tree cover in African savannas   总被引:1,自引:0,他引:1  
Aim We present a continental‐scale analysis that explores the processes controlling woody community structure in tropical savannas. We analyse how biotic and abiotic factors interact to promote and modify tree cover, examine alternative ecological hypotheses and quantify disturbance effects using satellite estimates of tree cover. Location African savannas. Methods Tree cover is represented as a resource‐driven potential cover related to rainfall and soil characteristics perturbed by natural and human factors such as fire, cattle grazing, human population and cultivation. Within this framework our approach combines semi‐empirical modelling and information theory to identify the best models. Results Woody community structure across African savannas is best represented by a sigmoidal response of tree cover to mean annual precipitation (MAP), with a dependency on soil texture, which is modified by the separate effects of fire, domestic livestock, human population density and cultivation intensity. This model explains c. 66% of the variance in tree cover and appears consistent across the savanna regions of Africa. Main conclusions The analysis provides a new understanding of the importance and interaction of environmental and disturbance factors that create the broad spatial patterns of tree cover observed in African savannas. Woody cover increases with rainfall, but is modified by disturbances. These ‘perturbation’ effects depend on MAP regimes: in arid savannas (MAP < 400 mm) they are generally small (< 1% decrease in cover), while in semi‐arid and mesic savannas (400–1600 mm), perturbations result in an average 2% (400 mm) to 23% (1600 mm) decrease in cover; fire frequency and human population have more influence than cattle, and cultivation appears, on average, to lead to small increases in woody cover. Wet savannas (1600–2200 mm) are controlled by perturbations that inhibit canopy closure and reduce tree cover by, on average, 24–34%. Full understanding of the processes determining savanna structure requires consideration of resource limitation and disturbance dynamics.  相似文献   

17.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

18.
The conservation values of ‘old‐growth’ forests in landscapes subject to repeated disturbance by fire or logging have received considerable conservation attention. However, little is known of the conservation values of old‐growth sites in ecosystems with an evolutionary history of highly frequent disturbance. Here we address the value of low fire frequency (<1 fire/10 years) in tropical savannas, the world's most fire‐prone biome, in terms of ant biodiversity. We do this by comparing savanna ant communities within the Territory Wildlife Park (TWP) near Darwin in the Australian monsoonal tropics, which has experienced a low incidence of fire over 25 years due to active fire exclusion, with those of adjacent (outside) sites experiencing the ambient fire regime of burning every 2–5 years. Ants were sampled using terrestrial and arboreal pitfall traps at 16 sites, eight each inside and outside TWP. More than 16 000 ants were recorded during the study, representing a total of 98 ant species from 30 genera. More species in total were recorded outside (90) than inside (74) TWP, but there was no difference in mean site species richness or abundance, and overall species composition was similar. All species recorded inside TWP are common and widespread throughout the savanna landscapes of the broader region, in the absence of active fire exclusion. Low fire frequency at the Territory Wildlife Park therefore does not appear to have enhanced regional ant conservation values. Our findings reinforce the importance of targeting fire regimes that are clearly linked to positive conservation outcomes, rather than assuming a need for maximum ‘pyrodiversity’.  相似文献   

19.
Analysis of wildfire extinguishment can help to identify the relative contribution of weather and management to the prevention of fire spread. Here we examine the role of weather, previous fire scars and other fuel interruptions at stopping the spread of nine large (mean 90 000 ha) late dry season fires in Arnhem Land, in the tropical savannas of northern Australia. Daily spread was mapped using Moderate‐resolution Imaging Spectroradiometer (MODIS) satellite imagery with a resolution of 250 m. We sampled points along the boundary of the fires and 1 km inside the boundary and compared conditions between the two sets. Using a combination of binomial regression and regression tree analysis, we found that recent burn scars (from the same year) were very effective at stopping fires. Where there was any recent burning within 500 m of a point, there was a 92% likelihood that it was a boundary. Interruptions such as roads, rivers and topography had small but significant effects. Vegetation type and vegetation greenness also had minor effects. Weather had a small effect via wind speed. This minor role of weather was reinforced by the fact that on most days the fires were both spreading and stopping at different parts of their perimeter. In these savannas, the weather in the late dry season is relatively invariant and is probably always conducive to some degree of fire spread. Here, interruptions to the fuel are critical to stopping fires. Nevertheless, for approximately half of boundary cases, the cause of stopping was not clear. This is probably due to the coarse scale of the analysis that does not reflect fine patterns of fuel arrangements.  相似文献   

20.
Previous analyses of historical aerial photography and satellite imagery have shown thickening of woody cover in Australian tropical savannas, despite increasing fire frequency. The thickening has been attributed to increasing precipitation and atmospheric CO2 enrichment. These analyses involved labour‐intensive, manual classification of vegetation, and hence were limited in the extent of the areas and the number of measurement times used. Object‐based, semi‐automated classification of historical sequences of aerial photography and satellite imagery has enabled the spatio‐temporal analysis of woody cover over entire landscapes, thus facilitating measurement, monitoring and attribution of drivers of change. Using this approach, we investigated woody cover change in 4000 ha of intact mesic savanna in the Ranger uranium lease and surrounding Kakadu National Park, using imagery acquired on 10 occasions between 1950 and 2016. Unlike previous studies, we detected no overall trend in woody cover through time. Some variation in cover was related to rainfall in the previous 12 months, and there were weak effects of fire in the year of image acquisition and the antecedent 4 years. Our local‐scale study showed a mesic eucalypt savanna in northern Australia has been resilient to short‐term variation in rainfall and fire activity; however, changes in canopy cover could have occurred in other settings. When applying this semi‐automated approach to similar studies of savanna dynamics, we recommend maximising the time depth and number of measurement years, standardising the time of year for image acquisition and using many plots of 1 ha in area, rather than fewer, larger plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号