首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

2.
3.
The role of different forms of natural selection in the evolution of genomes in root nodule bacteria (rhizobia) is analyzed for the first time. In these nitrogen-fixing symbionts of leguminous plants, two types of genome organization are revealed: (i) unitary type, where over 95% of genetic information is encoded by chromosomes (5.3–5.5 Mb in Azorhizobium, 7.0–7.8 Mb in Mesorhizobium, 7.3–10.1 Mb in Bradyrhizobium); (ii) multipartite type, where up to 50% of genetic information is allocated to plasmids or chromids which may exceed 2 Mb in size and usually control the symbiotic properties (pSyms) in fast-growing rhizobia (Rhizobium, Sinorhizobium, Neorhizobium). Emergence of fast-growing species with narrow host ranges are correlated to the extension of extrachromosomal parts of genomes, including the increase in pSyms sizes (in Sinorhizobium). An important role in this evolution is implemented by diversifying selection since the genomic diversity evolved in rhizobia owing to symbiotic interactions with highly divergent legumes. However, analysis of polymorphism in nod genes (encoding synthesis of lipo-chitooligosaccharide signaling Nod factors) suggests that the impacts of diversifying selection are restricted to the bacterial divergence for host specificity and do not influence the overall genome organization. Since the extension of rhizobia genome diversity results from the horizontal sym gene transfer occurring with low frequencies, we suggest that this extension is due to the frequency-dependent selection anchoring the rare genotypes in bacterial populations. It is implemented during the rhizobia competition for nodulation encoded by the functionally diverse cmp genes. Their location in different parts of bacterial genomes may be considered as an important factor of their adaptive diversification implemented in the host-associated microbial communities.  相似文献   

4.
Distal hereditary motor neuropathies predominantly affect the motor neurons of the peripheral nervous system leading to chronic disability. Using whole genome sequencing (WGS) we have identified a novel structural variation (SV) within the distal hereditary motor neuropathy locus on chromosome 7q34–q36.2 (DHMN1). The SV involves the insertion of a 1.35 Mb DNA fragment into the DHMN1 disease locus. The source of the inserted sequence is 2.3 Mb distal to the disease locus at chromosome 7q36.3. The insertion involves the duplication of five genes (LOC389602, RNF32, LMBR1, NOM1, MNX1) and partial duplication of UBE3C. The genomic structure of genes within the DHMN1 locus are not disrupted by the insertion and no disease causing point mutations within the locus were identified. This suggests the novel SV is the most likely DNA mutation disrupting the DHMN1 locus. Due to the size and position of the DNA insertion, the gene(s) directly affected by the genomic re-arrangement remains elusive. Our finding represents a new genetic cause for hereditary motor neuropathies and highlights the growing importance of interrogating the non-coding genome for SV mutations in families which have been excluded for genome wide coding mutations.  相似文献   

5.

Background

The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade.

Results

The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group.

Conclusions

The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of these motile intestinal lactobacilli.
  相似文献   

6.
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.  相似文献   

7.
Kloeckera apiculata, as the anamorphic state of Hanseniaspora uvarum from the Ascomycota phylum, plays an important role in the inhibition of fungal diseases in plants and spontaneous wine fermentation. This study was performed to sequence and analyze the whole genome of K. apiculata strain 34-9; This analysis provides further genomic features and assists functional research. The complete genome was determined using an Illumina HiSeq 2000 system applying paired-end and mate-pair methods to construct four reads libraries. The data assembly of all the reads resulted in a total genome size of 8.1 Mb, including 106 contigs, which were assembled into 41 scaffolds with a 31.95 % G+C content and a 234X sequence coverage. The performance of the gene prediction and functional annotation revealed that 2724 of 3786 protein-coding genes matched the KOG database, and 1127 genes were classified into GO categories. Further genome features analyses found 1066 microsatellite sites, 71 tRNAs, 3 rRNAs and 3 microRNAs in the genomic DNA. A prediction of the metabolic pathways identified potentially crucial genes for explaining the phenylalanine pathway involved in biocontrol. Comparisons with the typical yeasts Lachancea thermotolerans, Kluyveromyces lactis and Saccharomyces cerevisiae revealed the particularity and difference of K. apiculata strain 34-9. The genome alignments among Hanseniaspora vineae T02/19AF, K. apiculata DSM 2768 and 34-9 indicated numerous homologous regions distributed over the genomes between strain DSM2768 and 34-9. A SSR analysis identified that mono- and tri- nucleotide repeat types were more abundant in all six types, likely affecting the evolution of K. apiculata.  相似文献   

8.

Key message

A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes.

Abstract

We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62–56.98 Mb.
  相似文献   

9.
The GRAS gene family performs a variety of functions in plant growth and development processes, and they also play essential roles in plant response to environmental stresses. Medicago truncatula is a diploid plant with a small genome used as a model organism. Despite the vital role of GRAS genes in plant growth regulation, few studies on these genes in M. truncatula have been conducted to date. Using the M. truncatula reference genome data, we identified 68 MtGRAS genes, which were classified into 16 groups by phylogenetic analysis, located on eight chromosomes. The structure analysis indicated that MtGRAS genes retained a relatively constant exon–intron composition during the evolution of the M. truncatula genome. Most of the closely related members in the phylogenetic tree had similar motif compositions. Different motifs distributed in different groups of the MtGRAS genes were the sources of their functional divergence. Twenty-eight MtGRAS genes were expressed in six tissues, namely root, bud, blade, seedpod, nodule, and flower tissues, suggesting their putative function in many aspects of plant growth and development. Nine MtGRAS genes were upregulated under cold, freezing, drought, ABA, and salt stress treatments, indicating that they play vital roles in the response to abiotic stress in M. truncatula. Our study provides valuable information that can be utilized to improve the quality and agronomic benefits of M. truncatula and other plants.  相似文献   

10.
In this study, we delineated the genome sequence of a Bacillus cereus strain BC04 isolated from a stool sample in India. The draft genome is 5.1 Mb in size and consists of total 109 scaffolds, GC content is 35.2% with 5182 coding genes. The comparative analysis with other completely sequenced genomes highlights the unique presence of genomic islands, hemolysin, capsular synthetic protein, modifying enzymes accC7 and catA15, regulators of antibiotic resistance MarR and LysR with annotated functions related to virulence, stress response, and antimicrobial resistance. Overall, this study not only signifies the genetic diversity in gut isolate BC04 in particular, but also pinpoints the presence of unique genes possessed by B. cereus which can be pertinently exploited to design novel drugs and intervention strategies for the treatment of food borne diseases.  相似文献   

11.
Gemmata obscuriglobus is a Gram-negative bacterium with several intriguing biological features. Here, we present a complete, de novo whole genome assembly for G. obscuriglobus which consists of a single, circular 9 Mb chromosome, with no plasmids detected. The genome was annotated using the NCBI Prokaryotic Genome Annotation pipeline to generate common gene annotations. Analysis of the rRNA genes revealed three interesting features for a bacterium. First, linked G. obscuriglobus rrn operons have a unique gene order, 23S–5S–16S, compared to typical prokaryotic rrn operons (16S–23S–5S). Second, G. obscuriglobus rrn operons can either be linked or unlinked (a 16S gene is in a separate genomic location from a 23S and 5S gene pair). Third, all of the 23S genes (5 in total) have unique polymorphisms. Genome analysis of a different Gemmata species (SH-PL17), revealed a similar 23S–5S–16S gene order in all of its linked rrn operons and the presence of an unlinked operon. Together, our findings show that unique and rare features in Gemmata rrn operons among prokaryotes provide a means to better define the evolutionary relatedness of Gemmata species and the divergence time for different Gemmata species. Additionally, these rrn operon differences provide important insights into the rrn operon architecture of common ancestors of the planctomycetes.  相似文献   

12.
13.
14.

Key message

An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence.

Abstract

Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
  相似文献   

15.
Bacteria in the genus Polaribacter, belonging to the family Flavobacteriaceae, are typically isolated from marine environments. Polaribacter dokdonensis DSW-5, the type strain of the species, is a Gram-negative bacterium isolated from the East Sea of Korea. Whole genome shotgun sequencing was performed with the HiSeq 2000 platform and paired-end reads were generated at 188-fold coverage. The sequencing reads were assembled into two contigs with a total length of 3.08 Mb. The genome sequences of DSW-5 contain 2,776 proteincoding sequences and 41 RNA genes. Comparison of average nucleotide identities among six available Polaribacteria genomes including DSW-5 suggested that the DSW-5 genome is most similar to that of Polaribacter sp. MED152, which is a proteorhodopsin-containing marine bacterium. A phylogenomic analysis of the six Polaribacter strains and 245 Flavobacteriaceae bacteria confirmed a close relationship of the genus Polaribacter with Tenacibaculum and Kordia. DSW-5’s genome has a gene encoding proteorhodopsin and genes encoding 85 enzymes belonging to carbohydrate-active enzyme families and involved in polysaccharide degradation, which may play important roles in energy metabolism of the bacterium in the marine ecosystem. With genes for 238 CAZymes and 203 peptidases, DSW-5 has a relatively high number of degrading enzymes for its genome size suggesting its characteristics as a free-living marine heterotroph.  相似文献   

16.
The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera’s high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.  相似文献   

17.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

18.
19.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

20.
YUCCA is an important enzyme which catalyzes a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and implicated in several processes during plant growth and development. Genome wide analyses of YUCCA genes have been performed in Arabidopsis, rice, tomato, and Populus, but have never been characterized in soybean, one of the most important oil crops in the world. In this study, 22 GmYUCCA genes (GmYUCCA1-22) were identified and named based on soybean whole-genome sequence. Phylogenetic analysis of YUCCA proteins from Glycine max, Arabidopsis, Oryza sativa, tomato, and Populus euphratica revealed that GmYUCCA proteins could be divided into four subfamilies. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that GmYUCCA genes have diverse expression patterns in different tissues and under various stress treatments. Compared to the wild type (WT), the transgenic GmYUCCA5 Arabidopsis plants displayed downward curling of the leaf blade margin, evident apical dominance, higher plant height, and shorter length of siliques. Our results provide a comprehensive analysis of the soybean YUCCA gene family and lay a solid foundation for further experiments in order to functionally characterize these gene members during soybean growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号